--- library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers - mteb model-index: - name: mxbai-embed-large-v1-sts-matryoshka results: - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_pearson value: 89.74819706519132 - type: cos_sim_spearman value: 89.16227258672195 - type: euclidean_pearson value: 87.4894915970516 - type: euclidean_spearman value: 88.82371065549121 - type: manhattan_pearson value: 87.4550672002364 - type: manhattan_spearman value: 88.74479319465274 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_pearson value: 87.6165367318343 - type: cos_sim_spearman value: 82.96648281765052 - type: euclidean_pearson value: 85.15841275786363 - type: euclidean_spearman value: 82.59932858741094 - type: manhattan_pearson value: 85.13304536590803 - type: manhattan_spearman value: 82.57423596486754 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_pearson value: 90.28534830444329 - type: cos_sim_spearman value: 82.55267827529079 - type: euclidean_pearson value: 88.25378069753911 - type: euclidean_spearman value: 83.11525616002255 - type: manhattan_pearson value: 88.22692740852892 - type: manhattan_spearman value: 83.09760476508313 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_pearson value: 92.4873773117415 - type: cos_sim_spearman value: 92.45311856572782 - type: euclidean_pearson value: 91.3940762182452 - type: euclidean_spearman value: 91.99304193285555 - type: manhattan_pearson value: 91.36013458363827 - type: manhattan_spearman value: 91.94059360016104 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_pearson value: 92.86047241342555 - type: cos_sim_spearman value: 91.7373997118018 - type: euclidean_pearson value: 91.85151887796326 - type: euclidean_spearman value: 91.84470114529888 - type: manhattan_pearson value: 91.84546446666218 - type: manhattan_spearman value: 91.83943192650281 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_pearson value: 91.54334603049196 - type: cos_sim_spearman value: 92.53856973601617 - type: euclidean_pearson value: 91.78019629944465 - type: euclidean_spearman value: 92.34058447365024 - type: manhattan_pearson value: 91.77889261840363 - type: manhattan_spearman value: 92.34415590718599 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_pearson value: 86.44182676813374 - type: cos_sim_spearman value: 88.13762635519763 - type: euclidean_pearson value: 87.368150115143 - type: euclidean_spearman value: 87.80086022782062 - type: manhattan_pearson value: 87.36033717796437 - type: manhattan_spearman value: 87.79278886160228 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_pearson value: 90.45736504439745 - type: cos_sim_spearman value: 90.36467157990322 - type: euclidean_pearson value: 90.19668998748772 - type: euclidean_spearman value: 89.89620750310942 - type: manhattan_pearson value: 90.28020856755623 - type: manhattan_spearman value: 90.06372752006743 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: eea2b4fe26a775864c896887d910b76a8098ad3f metrics: - type: cos_sim_pearson value: 68.08713149697203 - type: cos_sim_spearman value: 68.46457718572601 - type: euclidean_pearson value: 69.25165385150007 - type: euclidean_spearman value: 68.1342295049583 - type: manhattan_pearson value: 69.30447292480429 - type: manhattan_spearman value: 68.25582089078411 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_pearson value: 88.34259569356074 - type: cos_sim_spearman value: 89.78243695761168 - type: euclidean_pearson value: 89.12060338382234 - type: euclidean_spearman value: 89.67729976099504 - type: manhattan_pearson value: 89.12528974491349 - type: manhattan_spearman value: 89.66532321334671 --- # MichaelKarpe/mxbai-embed-large-v1-sts-matryoshka This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('MichaelKarpe/mxbai-embed-large-v1-sts-matryoshka') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('MichaelKarpe/mxbai-embed-large-v1-sts-matryoshka') model = AutoModel.from_pretrained('MichaelKarpe/mxbai-embed-large-v1-sts-matryoshka') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=MichaelKarpe/mxbai-embed-large-v1-sts-matryoshka) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 360 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MatryoshkaLoss.MatryoshkaLoss` with parameters: ``` {'loss': 'CoSENTLoss', 'matryoshka_dims': [1024, 768, 512, 256, 128, 64], 'matryoshka_weights': [1, 1, 1, 1, 1, 1], 'n_dims_per_step': -1} ``` Parameters of the fit()-Method: ``` { "epochs": 4, "evaluation_steps": 1000, "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator", "max_grad_norm": 1, "optimizer_class": "", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 144, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Citing & Authors