--- license: mit datasets: - Miguelpef/3d-prompt language: - es base_model: - facebook/bart-base new_version: Miguelpef/bart-base-lora-3DPrompt pipeline_tag: text-generation library_name: transformers tags: - 3d - prompt - español --- ![Miguelpef/bart-base-lora-3DPrompt](images/ModeloLora.jpg) **The model is still in the training phase. This is not the final version and may contain artifacts and perform poorly in some cases.** ## Setting Up ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from peft import PeftModel, PeftConfig # Define the repository ID repo_id = "Miguelpef/bart-base-lora-3DPrompt" # Load the PEFT configuration from the Hub peft_config = PeftConfig.from_pretrained(repo_id) # Load the base model from the Hub model = AutoModelForSeq2SeqLM.from_pretrained(peft_config.base_model_name_or_path) # Load the tokenizer from the Hub tokenizer = AutoTokenizer.from_pretrained(repo_id) # Wrap the base model with PEFT model = PeftModel.from_pretrained(model, repo_id) # Now you can use the model for inference as before def generar_prompt_desde_objeto(objeto): prompt = objeto inputs = tokenizer(prompt, return_tensors='pt').to(model.device) outputs = model.generate(**inputs, max_length=100) prompt_generado = tokenizer.decode(outputs[0], skip_special_tokens=True) return prompt_generado mi_objeto = "Mesa grande marrón" #Change this object prompt_generado = generar_prompt_desde_objeto(mi_objeto) print({prompt_generado}) ```