--- license: apache-2.0 base_model: NbAiLab/nb-whisper-medium-verbatim tags: - generated_from_trainer metrics: - wer model-index: - name: nb-whisper-medium-karelian-CodeSwitching results: [] --- # nb-whisper-medium-karelian-CodeSwitching This model is a fine-tuned version of [NbAiLab/nb-whisper-medium-verbatim](https://huggingface.co/NbAiLab/nb-whisper-medium-verbatim) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5439 - Wer: 0.2585 - Cer: 0.0714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:-----:|:---------------:|:------:|:------:| | 0.2467 | 1.1351 | 500 | 0.5664 | 0.3488 | 0.0895 | | 0.0718 | 2.2701 | 1000 | 0.5562 | 0.3166 | 0.0819 | | 0.0513 | 3.4052 | 1500 | 0.5366 | 0.2997 | 0.0798 | | 0.0377 | 4.5403 | 2000 | 0.5430 | 0.2815 | 0.0730 | | 0.0339 | 5.6754 | 2500 | 0.5444 | 0.2906 | 0.0755 | | 0.0263 | 6.8104 | 3000 | 0.5439 | 0.2757 | 0.0735 | | 0.0182 | 7.9455 | 3500 | 0.5474 | 0.2754 | 0.0741 | | 0.0141 | 9.0806 | 4000 | 0.5625 | 0.2808 | 0.0758 | | 0.0117 | 10.2157 | 4500 | 0.5537 | 0.2662 | 0.0716 | | 0.0122 | 11.3507 | 5000 | 0.5610 | 0.2703 | 0.0726 | | 0.0118 | 12.4858 | 5500 | 0.5557 | 0.2686 | 0.0720 | | 0.0075 | 13.6209 | 6000 | 0.5522 | 0.2673 | 0.0711 | | 0.0069 | 14.7560 | 6500 | 0.5576 | 0.2764 | 0.0745 | | 0.0072 | 15.8910 | 7000 | 0.5562 | 0.2676 | 0.0705 | | 0.0085 | 17.0261 | 7500 | 0.5474 | 0.2713 | 0.0868 | | 0.0041 | 18.1612 | 8000 | 0.5493 | 0.2639 | 0.0716 | | 0.0041 | 19.2963 | 8500 | 0.5493 | 0.2612 | 0.0712 | | 0.0041 | 20.4313 | 9000 | 0.5449 | 0.2554 | 0.0699 | | 0.004 | 21.5664 | 9500 | 0.5444 | 0.2591 | 0.0708 | | 0.0028 | 22.7015 | 10000 | 0.5439 | 0.2585 | 0.0714 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1