File size: 1,743 Bytes
fd9db95 abf2fdb fd9db95 abf2fdb fd9db95 abf2fdb fd9db95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: llama2
base_model: epfl-llm/meditron-7b
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:
- HuggingFaceH4/deita-10k-v0-sft
model-index:
- name: meditron-7b-wo-kqa_golden-iter-sft-step1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# meditron-7b-wo-kqa_golden-iter-sft-step1
This model is a fine-tuned version of [epfl-llm/meditron-7b](https://huggingface.co/epfl-llm/meditron-7b) on the HuggingFaceH4/deita-10k-v0-sft dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3041
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.2849 | 0.99 | 19 | 1.2240 |
| 1.9826 | 1.97 | 38 | 1.2528 |
| 1.7301 | 2.96 | 57 | 1.3041 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.2
- Datasets 2.14.6
- Tokenizers 0.15.2
|