File size: 1,780 Bytes
a1f1494 e65a5b4 a1f1494 c55047f a1f1494 e65a5b4 a1f1494 e65a5b4 a1f1494 c55047f a1f1494 c55047f a1f1494 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
base_model: dmis-lab/selfbiorag_7b
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- trl
- sft
- alignment-handbook
- generated_from_trainer
datasets:
- HuggingFaceH4/deita-10k-v0-sft
model-index:
- name: selfbiorag-7b-1e-6-wo-medication_qa-iter-sft-step1_lr
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# selfbiorag-7b-1e-6-wo-medication_qa-iter-sft-step1_lr
This model is a fine-tuned version of [dmis-lab/selfbiorag_7b](https://huggingface.co/dmis-lab/selfbiorag_7b) on the HuggingFaceH4/deita-10k-v0-sft dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4499
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.4295 | 1.0 | 5 | 1.4872 |
| 1.3958 | 2.0 | 10 | 1.4525 |
| 1.3727 | 3.0 | 15 | 1.4499 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.2
- Datasets 2.14.6
- Tokenizers 0.15.2
|