--- base_model: dmis-lab/selfbiorag_7b tags: - alignment-handbook - trl - dpo - generated_from_trainer - trl - dpo - generated_from_trainer datasets: - HuggingFaceH4/ultrafeedback_binarized model-index: - name: selfbiorag-7b-dpo-full-wo-kqa_silver_wogold-ep3 results: [] --- # selfbiorag-7b-dpo-full-wo-kqa_silver_wogold-ep3 This model is a fine-tuned version of [dmis-lab/selfbiorag_7b](https://huggingface.co/dmis-lab/selfbiorag_7b) on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set: - Loss: 0.6392 - Rewards/chosen: 0.1232 - Rewards/rejected: -0.0030 - Rewards/accuracies: 0.7527 - Rewards/margins: 0.1262 - Logps/rejected: -171.6258 - Logps/chosen: -150.9050 - Logits/rejected: -1.5645 - Logits/chosen: -1.7964 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6608 | 0.25 | 100 | 0.6631 | 0.1074 | 0.0395 | 0.7107 | 0.0680 | -167.3843 | -152.4830 | -1.5362 | -1.7612 | | 0.6271 | 0.51 | 200 | 0.6474 | 0.1331 | 0.0272 | 0.7455 | 0.1060 | -168.6118 | -149.9109 | -1.5243 | -1.7495 | | 0.61 | 0.76 | 300 | 0.6403 | 0.1251 | 0.0020 | 0.7554 | 0.1232 | -171.1355 | -150.7145 | -1.5597 | -1.7911 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.1.2 - Datasets 2.14.6 - Tokenizers 0.15.2