--- library_name: transformers license: apache-2.0 base_model: google/mt5-base tags: - generated_from_trainer model-index: - name: bslm-entity-extraction-mt5-base-include-desc-normalized-tr243k results: [] --- # bslm-entity-extraction-mt5-base-include-desc-normalized-tr243k This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0123 - Exact Match: 67.9183 - F1 Score: 88.9881 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 Score | |:-------------:|:------:|:-----:|:---------------:|:-----------:|:--------:| | 0.7787 | 0.0328 | 500 | 0.5270 | 0.0 | 0.0 | | 0.0903 | 0.0656 | 1000 | 0.0410 | 40.0656 | 75.4663 | | 0.0428 | 0.0984 | 1500 | 0.0276 | 49.4349 | 81.9724 | | 0.0462 | 0.1312 | 2000 | 0.0276 | 50.4375 | 81.5147 | | 0.0304 | 0.1640 | 2500 | 0.0232 | 54.2836 | 84.0088 | | 0.0274 | 0.1968 | 3000 | 0.0218 | 55.7237 | 84.5312 | | 0.0251 | 0.2296 | 3500 | 0.0205 | 56.7262 | 84.8972 | | 0.0252 | 0.2624 | 4000 | 0.0209 | 55.0492 | 84.5563 | | 0.0236 | 0.2953 | 4500 | 0.0185 | 60.2443 | 86.0929 | | 0.0221 | 0.3281 | 5000 | 0.0194 | 57.6376 | 85.3742 | | 0.0226 | 0.3609 | 5500 | 0.0179 | 61.3015 | 86.3940 | | 0.025 | 0.3937 | 6000 | 0.0176 | 59.8979 | 86.1283 | | 0.0211 | 0.4265 | 6500 | 0.0178 | 60.5177 | 86.3265 | | 0.0206 | 0.4593 | 7000 | 0.0166 | 61.3380 | 86.6077 | | 0.0194 | 0.4921 | 7500 | 0.0170 | 60.3536 | 86.3744 | | 0.0184 | 0.5249 | 8000 | 0.0159 | 63.2155 | 87.2735 | | 0.0192 | 0.5577 | 8500 | 0.0164 | 61.8848 | 86.8659 | | 0.0181 | 0.5905 | 9000 | 0.0158 | 62.1035 | 86.9785 | | 0.0186 | 0.6233 | 9500 | 0.0156 | 62.7598 | 87.2376 | | 0.018 | 0.6561 | 10000 | 0.0151 | 64.2727 | 87.6065 | | 0.0171 | 0.6889 | 10500 | 0.0154 | 62.6139 | 87.2134 | | 0.0183 | 0.7217 | 11000 | 0.0145 | 64.7102 | 87.8215 | | 0.0182 | 0.7545 | 11500 | 0.0150 | 62.9420 | 87.3372 | | 0.017 | 0.7873 | 12000 | 0.0141 | 65.0747 | 87.9349 | | 0.0183 | 0.8202 | 12500 | 0.0148 | 62.6504 | 87.2310 | | 0.0179 | 0.8530 | 13000 | 0.0138 | 65.4575 | 87.9886 | | 0.017 | 0.8858 | 13500 | 0.0136 | 65.8221 | 88.1741 | | 0.0168 | 0.9186 | 14000 | 0.0140 | 64.6555 | 87.8573 | | 0.017 | 0.9514 | 14500 | 0.0135 | 66.2778 | 88.3458 | | 0.0174 | 0.9842 | 15000 | 0.0140 | 64.8195 | 88.0423 | | 0.0154 | 1.0170 | 15500 | 0.0138 | 65.8039 | 88.2375 | | 0.0154 | 1.0498 | 16000 | 0.0135 | 66.3507 | 88.3934 | | 0.015 | 1.0826 | 16500 | 0.0135 | 65.9861 | 88.3272 | | 0.0151 | 1.1154 | 17000 | 0.0139 | 65.5851 | 88.2204 | | 0.0153 | 1.1482 | 17500 | 0.0131 | 67.5355 | 88.7772 | | 0.0148 | 1.1810 | 18000 | 0.0136 | 66.3507 | 88.4478 | | 0.015 | 1.2138 | 18500 | 0.0134 | 66.4054 | 88.5039 | | 0.0154 | 1.2466 | 19000 | 0.0133 | 66.5877 | 88.5994 | | 0.0139 | 1.2794 | 19500 | 0.0132 | 66.1502 | 88.4829 | | 0.0156 | 1.3122 | 20000 | 0.0131 | 66.9705 | 88.6868 | | 0.016 | 1.3451 | 20500 | 0.0127 | 67.0252 | 88.7032 | | 0.0143 | 1.3779 | 21000 | 0.0130 | 67.0252 | 88.7021 | | 0.0159 | 1.4107 | 21500 | 0.0128 | 67.2803 | 88.8236 | | 0.0133 | 1.4435 | 22000 | 0.0129 | 67.3168 | 88.8505 | | 0.0131 | 1.4763 | 22500 | 0.0127 | 67.1892 | 88.8617 | | 0.0137 | 1.5091 | 23000 | 0.0130 | 67.0434 | 88.7488 | | 0.0133 | 1.5419 | 23500 | 0.0126 | 67.6449 | 88.9151 | | 0.0144 | 1.5747 | 24000 | 0.0127 | 67.3533 | 88.8633 | | 0.0142 | 1.6075 | 24500 | 0.0125 | 67.4809 | 88.9516 | | 0.0136 | 1.6403 | 25000 | 0.0128 | 66.8246 | 88.7465 | | 0.0139 | 1.6731 | 25500 | 0.0132 | 66.0955 | 88.5128 | | 0.0126 | 1.7059 | 26000 | 0.0127 | 67.8090 | 89.0277 | | 0.0135 | 1.7387 | 26500 | 0.0126 | 67.5173 | 88.9308 | | 0.0141 | 1.7715 | 27000 | 0.0124 | 67.6449 | 88.9314 | | 0.0138 | 1.8043 | 27500 | 0.0123 | 68.0095 | 89.0386 | | 0.0141 | 1.8371 | 28000 | 0.0123 | 68.0095 | 88.9919 | | 0.0142 | 1.8700 | 28500 | 0.0121 | 68.4470 | 89.0863 | | 0.0147 | 1.9028 | 29000 | 0.0124 | 67.8454 | 88.9933 | | 0.0135 | 1.9356 | 29500 | 0.0124 | 67.6814 | 88.9077 | | 0.014 | 1.9684 | 30000 | 0.0123 | 67.9183 | 88.9881 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1