File size: 1,943 Bytes
cc849ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
base_model: microsoft/infoxlm-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: vp-infoxlm-base-dsc
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vp-infoxlm-base-dsc

This model is a fine-tuned version of [microsoft/infoxlm-base](https://huggingface.co/microsoft/infoxlm-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4642
- Accuracy: 0.8251
- F1: 0.8249
- Precision: 0.8259
- Recall: 0.8251

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.9971        | 1.0   | 1590 | 0.8708          | 0.5664   | 0.5565 | 0.6042    | 0.5664 |
| 0.7175        | 2.0   | 3180 | 0.5943          | 0.7631   | 0.7626 | 0.7713    | 0.7631 |
| 0.5942        | 3.0   | 4770 | 0.5007          | 0.8069   | 0.8069 | 0.8075    | 0.8069 |
| 0.4981        | 4.0   | 6360 | 0.4676          | 0.8188   | 0.8182 | 0.8218    | 0.8188 |
| 0.4669        | 5.0   | 7950 | 0.4642          | 0.8251   | 0.8249 | 0.8259    | 0.8251 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 3.0.0
- Tokenizers 0.19.1