lrl-modelcloud commited on
Commit
5aa7e79
·
verified ·
1 Parent(s): b686dd8

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -0
README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_model:
2
+ - deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
3
+ pipeline_tag: text-generation
4
+ tags:
5
+ - gptqmodel
6
+ - modelcloud
7
+ - chat
8
+ - qwen
9
+ - deepseek
10
+ - instruct
11
+ - int4
12
+ - gptq
13
+ - 4bit
14
+ - W4A16
15
+ ---
16
+
17
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/641c13e7999935676ec7bc03/UDYiGu_Wagb-0rFJLdk3C.png)
18
+
19
+ This model has been quantized using [GPTQModel](https://github.com/ModelCloud/GPTQModel).
20
+
21
+ - **bits**: 4
22
+ - **dynamic**: null
23
+ - **group_size**: 32
24
+ - **desc_act**: true
25
+ - **static_groups**: false
26
+ - **sym**: true
27
+ - **lm_head**: false
28
+ - **true_sequential**: true
29
+ - **quant_method**: "gptq"
30
+ - **checkpoint_format**: "gptq"
31
+ - **meta**:
32
+ - **quantizer**: gptqmodel:1.7.4
33
+ - **uri**: https://github.com/modelcloud/gptqmodel
34
+ - **damp_percent**: 0.1
35
+ - **damp_auto_increment**: 0.0025
36
+
37
+
38
+ ## Example:
39
+ ```python
40
+ from transformers import AutoTokenizer
41
+ from gptqmodel import GPTQModel
42
+
43
+ tokenizer = AutoTokenizer.from_pretrained("ModelCloud/DeepSeek-R1-Distill-Qwen-7B-gptqmodel-4bit-vortex-v1")
44
+ model = GPTQModel.load("ModelCloud/DeepSeek-R1-Distill-Qwen-7B-gptqmodel-4bit-vortex-v1")
45
+
46
+ messages = [
47
+ {"role": "system", "content": "You are a helpful and harmless assistant. You should think step-by-step."},
48
+ {"role": "user", "content": "How can I design a data structure in C++ to store the top 5 largest integer numbers?"},
49
+ ]
50
+ input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
51
+
52
+ outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=512)
53
+ result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
54
+
55
+ print(result)
56
+ ```