--- license: other license_name: falcon-llm-license license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html language: - en base_model: tiiuae/Falcon3-10B-Instruct pipeline_tag: text-generation tags: - gptqmodel - modelcloud - chat - falcon3 - instruct - int4 - gptq - 4bit - W4A16 --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/641c13e7999935676ec7bc03/uTEB9pmSp9atF4tUKNVaP.png) This model has been quantized using [GPTQModel](https://github.com/ModelCloud/GPTQModel). - **bits**: 4 - **dynamic**: null - **group_size**: 32 - **desc_act**: true - **static_groups**: false - **sym**: true - **lm_head**: false - **true_sequential**: true - **quant_method**: "gptq" - **checkpoint_format**: "gptq" - **meta**: - **quantizer**: gptqmodel:1.4.4 - **uri**: https://github.com/modelcloud/gptqmodel - **damp_percent**: 0.1 - **damp_auto_increment**: 0.0025 ## Example: ```python from transformers import AutoTokenizer from gptqmodel import GPTQModel tokenizer = AutoTokenizer.from_pretrained("ModelCloud/Falcon3-10B-Instruct-gptqmodel-4bit-vortex-v1") model = GPTQModel.load("ModelCloud/Falcon3-10B-Instruct-gptqmodel-4bit-vortex-v1") messages = [ {"role": "user", "content": "How can I design a data structure in C++ to store the top 5 largest integer numbers?"}, ] input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=512) result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True) print(result) ```