File size: 13,741 Bytes
6ffe992
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c83e61360e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c83e6136170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c83e6136200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c83e6136290>", "_build": "<function ActorCriticPolicy._build at 0x7c83e6136320>", "forward": "<function ActorCriticPolicy.forward at 0x7c83e61363b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c83e6136440>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c83e61364d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7c83e6136560>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c83e61365f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c83e6136680>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c83e6136710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c83e6140b80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690543946168123123, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFq1vj3Tr7o/IvXoPo52A775Tw+8CZoIPgAAAAAAAAAAGrAMvUNlST0wIdM7iUM6vuxLtTzsZKe9AAAAAAAAAABT5B0+h3ZqP0pWOj2G2sy+JSMVPha8tLwAAAAAAAAAADPPbr0AZq4+peTXPG1lc74Q85C8lc7nPAAAAAAAAAAAAPeTvK5ZsbqBK7+9V729N7JNh7qjRCm3AACAPwAAgD/AmEi+dCghPqK4Az5762e+H09UPHr2lb0AAAAAAAAAAJozurxsN8o8TYA3vuRhaL5dyrm92mEePAAAAAAAAAAAU9R7PrjkgD9mCHA+e3Xyvv8Jsz6L4Ws8AAAAAAAAAADNZ0Q+7eauP8GdyT6L1gK/y7IvPqo5Pz4AAAAAAAAAAFrGo73XxNg+4pJtPK5/c75ihr+8/XzjvQAAAAAAAAAAGr2xvbh+wD9Mbh+/4PsiPhTMmDxm/yC+AAAAAAAAAAAArl++SIN9P1uGBD0NUtq+eoqAvqLNST4AAAAAAAAAAJr5OztKNZI/RhkYO3nF5L4txSM94gzgvAAAAAAAAAAAms6UPbqKZT6jRSG+BCwnviWaPb0EmIC8AAAAAAAAAAANdSg+l9oUPyK4HL6/dtS+ZYQcvdINBr4AAAAAAAAAAACi2D3zQOA+QxeQvTGCt77PoKi8ImC5vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFAnzch1TzeMAWyUS9CMAXSUR0Cup3mCZnctdX2UKGgGR0ByeGyKNyYHaAdNKAFoCEdArqfIKQaJh3V9lChoBkdAcPsYSg5BC2gHS+1oCEdArqi/fKp1inV9lChoBkdAcbZS6lLvkWgHTSwBaAhHQK6oxneSB9V1fZQoaAZHQHHoE2xY7q9oB00AAWgIR0CuqRly7wrldX2UKGgGR0ByFVrSE12raAdNFAFoCEdArql/NNahYnV9lChoBkdAcau0eEIw/WgHS/FoCEdArqoJT2nKn3V9lChoBkdAc4uDF6zE8GgHTQoBaAhHQK6qms052hZ1fZQoaAZHQHG5IrFwT/RoB00yAWgIR0CuqqdS2phndX2UKGgGR0BxH92ECeVcaAdNOAFoCEdArqsUd1dPcnV9lChoBkdAcOo7GNrCWWgHTTgBaAhHQK6rQnx8UmF1fZQoaAZHQHC+Kwt8NQVoB003AWgIR0Cuq0DcuanadX2UKGgGR0ByATrcCYCyaAdL4GgIR0Cuq1g4XGfgdX2UKGgGR0Bucb1TR6WxaAdNJgFoCEdArqvlH8TBZnV9lChoBkdAb+QeT3Zf2WgHTTUBaAhHQK6r+j8k2P11fZQoaAZHQGDFOtwJgLJoB03oA2gIR0CurAIgmqo7dX2UKGgGR0BykfyjHn2aaAdNMgFoCEdArqwzGLk0anV9lChoBkdAccg1p0wJxGgHTTIBaAhHQK6sM1PWQOp1fZQoaAZHQHLqKOPvKEFoB00EAWgIR0CurLykj5bhdX2UKGgGR0BwrOK1og3caAdNBgFoCEdArqzJSDRMOHV9lChoBkdAbnnoq0+kg2gHTQ0BaAhHQK6tIn/kvK51fZQoaAZHQHC/s/pt78hoB00UAWgIR0CurZV+RYA9dX2UKGgGR0ByxPjm0VrRaAdLy2gIR0Curdkx7AtWdX2UKGgGR0Byq5I5HVgAaAdNJwFoCEdArq5XepGWlnV9lChoBkdAccKiKziS72gHTSIBaAhHQK6u1DArQPZ1fZQoaAZHQHDIXcHnln1oB00DAWgIR0CurunGbTc7dX2UKGgGR0ByX90dRzikaAdNCAFoCEdArq77PjXFtXV9lChoBkdAcOIRAKOT7mgHTToBaAhHQK6vJmCiAUd1fZQoaAZHQHH9Kpo9LYhoB0vvaAhHQK6vU+r2g391fZQoaAZHQHED6ews5GVoB00rAWgIR0Cur5KTbFjvdX2UKGgGR0BvKwku6ErYaAdNEAFoCEdArq/F38n/k3V9lChoBkdAcGT68g6ltWgHTRYBaAhHQK6wFIhhYvF1fZQoaAZHQHCZ3/Pw/gRoB00cAWgIR0CusCuNPxhEdX2UKGgGR0BtfI8GLUCraAdNCwFoCEdArrCS5qdpZnV9lChoBkdAbgRNC7btZ2gHTVUBaAhHQK6wqhFEy+J1fZQoaAZHQG5naKcd5ptoB00RAWgIR0CusRGgBcRldX2UKGgGR0BvC9tGd7OWaAdNBwFoCEdArrFr/2kBS3V9lChoBkdAcsvwA2hqTWgHTVgBaAhHQK6xoGRFI/Z1fZQoaAZHQHEhdozvZyxoB00TAWgIR0Cusd/BN21VdX2UKGgGR0ByABBa9sabaAdNLQFoCEdArru0m4RVZXV9lChoBkdAc0SDrJKaomgHTQ0BaAhHQK67vBSDRMN1fZQoaAZHQHHmJJPIn0FoB00XAWgIR0Cuu9fS6UaAdX2UKGgGR0BsfgWHk92YaAdNMAFoCEdArrymMdcSoXV9lChoBkdAcXe/sE7nxWgHTRwBaAhHQK68yi1RceN1fZQoaAZHQHECEXgtOEdoB00pAWgIR0CuvNAZjx0/dX2UKGgGR0ByHwZbY9PlaAdNJgFoCEdArr1jidat93V9lChoBkdAb+VzV+Zw42gHTRsBaAhHQK69eaNuLrJ1fZQoaAZHQG/LY5tFa0RoB00ZAWgIR0CuveMl9jPOdX2UKGgGR0BxG1uk1uR+aAdNIwFoCEdArr4hiAlOXXV9lChoBkdAcMBQDV6NVGgHTQ0BaAhHQK6+T37DVH51fZQoaAZHQHPmzvRZ2ZBoB0v3aAhHQK6+ZFkQPI51fZQoaAZHQHDc9vS+g15oB00nAWgIR0Cuvo9FnZkDdX2UKGgGR0Bwo71VYISlaAdL82gIR0CuvqYgJTl1dX2UKGgGR0BxKleSjgyeaAdL62gIR0CuvrcD8tPIdX2UKGgGR0BymwQSSNfgaAdNFQFoCEdArr9/2EkB0nV9lChoBkdAcC8ZvkzXSWgHTQcBaAhHQK7ATOk+HJt1fZQoaAZHQG9M9UsFt9BoB00XAWgIR0CuwH3PiT+vdX2UKGgGR0BwLQcghbGFaAdNDAFoCEdArsD3os7MgXV9lChoBkdAcoZj7ALy+mgHTQcBaAhHQK7A+A80UGp1fZQoaAZHQHJvo68xsVNoB0vbaAhHQK7BD2IwdsB1fZQoaAZHQHIabpNbkfdoB00cAWgIR0CuwVaKUFB6dX2UKGgGR0BwqlOdoWYXaAdNIAFoCEdArsHWDlHSW3V9lChoBkdAcK84W1twaWgHTXEBaAhHQK7CADFId2h1fZQoaAZHQHEKxT4tYjloB00wAWgIR0CuwiY7JW/8dX2UKGgGR0BxQMophF3IaAdNCQFoCEdArsJQv+OwPnV9lChoBkdAbzbyUcGTtGgHTR4BaAhHQK7CbKujh1l1fZQoaAZHQHDichxHXmNoB00RAWgIR0CuwoH0se4kdX2UKGgGR0ByMuSA6MisaAdL+GgIR0Cuwog5q/M4dX2UKGgGR0Bwou40/GEPaAdNPAFoCEdArsNaxeLNwHV9lChoBkdAcOJDDCP6sWgHTU4BaAhHQK7Dg9vjwQV1fZQoaAZHQHMfZ2+wkgRoB00lAWgIR0Cuw/1HvttzdX2UKGgGR0Btm7MibDuSaAdNFwFoCEdArsSZc7hegXV9lChoBkdAcekVjZtelmgHS/loCEdArsS+hAWznnV9lChoBkdAcTGBV+7UX2gHTSYBaAhHQK7FAuUUwi91fZQoaAZHQG9SfNA1NxloB00OAWgIR0CuxSr2HtWudX2UKGgGR0By7BXV9Wp7aAdNDgFoCEdArsVnV3EAHXV9lChoBkdAcYsnTiKiwmgHS/xoCEdArsWV8XvYvnV9lChoBkdAcD640/GEPGgHTS8BaAhHQK7Fl4u9OAR1fZQoaAZHQHCNFk+X7choB0vxaAhHQK7FslF+d9V1fZQoaAZHQHE+MBIWgvloB0v8aAhHQK7F+lnAZbZ1fZQoaAZHQG3rbDMvAXVoB00qAWgIR0Cuxk2SEDhcdX2UKGgGR0ByAIQpWmxdaAdNEgFoCEdArsZdPnB+F3V9lChoBkdAcjaJtix3V2gHTSQBaAhHQK7Gr0dRzil1fZQoaAZHQHKNXd43WFxoB00oAWgIR0CuxsHdO6/ZdX2UKGgGR0BxkjMcIZ62aAdNDwFoCEdArsc/TRYzSHV9lChoBkdAbvHtaY/mkmgHTRoBaAhHQK7HlA/s3Q51fZQoaAZHQG1Gi0ngHeJoB00pAWgIR0CuyFdc0LtvdX2UKGgGR0BxijkDIRywaAdNDwFoCEdArsi5Ktga33V9lChoBkdAbp9HyVfNRmgHTQgBaAhHQK7I54zrNW51fZQoaAZHQG5iW9+PRzBoB00sAWgIR0CuyRXg1m8NdX2UKGgGR0Bx1hGOMl1KaAdNDQFoCEdArskoT7EYO3V9lChoBkdAcITQ/5ckdGgHTQIBaAhHQK7JNj81n/V1fZQoaAZHQHBjavaDf3xoB00UAWgIR0Cuya6GpMpPdX2UKGgGR0BwCoztTkyUaAdNDwFoCEdArsoMAWBSUHV9lChoBkdAbqOQWepXIWgHTSgBaAhHQK7KGMx46fd1fZQoaAZHQHBlfO+qR2doB01DAWgIR0Cuyl9I5HVgdX2UKGgGR0Bu6pjtoi9qaAdNDgFoCEdArsp4uRLbpXV9lChoBkdAcErTefqX4WgHTQABaAhHQK7KsAI6bON1fZQoaAZHQHB+IxYaHbhoB00OAWgIR0CuysngHeJpdX2UKGgGR0BvYPgaWHDaaAdNMAFoCEdArsrYHE/B33VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}