MohammedDhiyaEddine commited on
Commit
19e36e8
·
1 Parent(s): 87af7e8

Upload PPO LunarLander-v2

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 259.81 +/- 15.30
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdf339a3670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdf339a3700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdf339a3790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdf339a3820>", "_build": "<function ActorCriticPolicy._build at 0x7fdf339a38b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fdf339a3940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdf339a39d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdf339a3a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fdf339a3af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdf339a3b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdf339a3c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdf339a3ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdf3393f040>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680255175690084246, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2ilj3DmQ66enZJu0n+/7VZ2/Q5WipwOgAAAAAAAIA/Zoh3vK7NiLpIcnw6OsSCNgwplLk99JK5AACAPwAAgD9mlkk9XJdQumhZdTrefoI1tLnxOrV9kLkAAIA/AACAP2Y+Y7vDKTy6P0CENZz2KjAJyo06GiS/tAAAgD8AAIA/aGufvsAjHT8iMTQ+nmdxvmg0ib1HkxY9AAAAAAAAAAAmPZI9Z2wkP+46xzzyW1y+YxkQvJmFEzsAAAAAAAAAAFp98z17QtO63sDQtiRelzPh+lu7UrL7NQAAgD8AAIA/LfgPPuwRhTp70Fm7oyVHuM1Kfzwr5n86AACAPwAAgD9mSAE8w20Kul6r2DpENlM1x1Nvu9qGAboAAIA/AACAP2Zm1jjROK49LtdSPXC4cb68AoQ9zzOnOwAAAAAAAAAA5ggtPVLQ5blaiLo7Qoe2N9lZkrvJuoI2AACAPwAAgD9arIU91+N+OJ6zU7ta+Js3mp+Ku6sNB7cAAAAAAAAAACDrFD5SIqa7uNdQuPLtsTVNkwC9smp6NwAAgD8AAIA/RpiAvh2ZWD/7e1k+7UzBvt2Zxb2mUIc9AAAAAAAAAADm+i+9XKtXuq3G0Tv2Xco3A6vGOamthjYAAIA/AACAPwDwZDx7bIi6QkPvOmJsxDVRVyi7zRALugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIn+bkRab8Y0CUhpRSlIwBbJRN6AOMAXSUR0Cc4N2qkuYhdX2UKGgGaAloD0MI4bIKm4HuYECUhpRSlGgVTegDaBZHQJziPTBqKxd1fZQoaAZoCWgPQwjrVPmekTNkQJSGlFKUaBVN6ANoFkdAnOsQrQPZqXV9lChoBmgJaA9DCChHAaLg6WhAlIaUUpRoFU3oA2gWR0Cc6/nNxEORdX2UKGgGaAloD0MIyeU/pN8jZECUhpRSlGgVTegDaBZHQJzvJH9WIXV1fZQoaAZoCWgPQwiD29rCc4BkQJSGlFKUaBVN6ANoFkdAnPDc7EHdGnV9lChoBmgJaA9DCPet1olLUWNAlIaUUpRoFU3oA2gWR0Cc8k1A7gbZdX2UKGgGaAloD0MImnrdIjDHY0CUhpRSlGgVTegDaBZHQJz17Sqlxfh1fZQoaAZoCWgPQwgvMgG/xolnQJSGlFKUaBVN6ANoFkdAnPd6L876pHV9lChoBmgJaA9DCEVGByRhy2BAlIaUUpRoFU3oA2gWR0CdBHic5Ke1dX2UKGgGaAloD0MIdHrejQVWZkCUhpRSlGgVTegDaBZHQJ0PRr56+nJ1fZQoaAZoCWgPQwjf3jXoS5RgQJSGlFKUaBVN6ANoFkdAnRcSlvZRK3V9lChoBmgJaA9DCDOHpBbKPGNAlIaUUpRoFU3oA2gWR0CdGX78Nx2jdX2UKGgGaAloD0MIqd2vAvwuYUCUhpRSlGgVTegDaBZHQJ0bJOP/7zl1fZQoaAZoCWgPQwhEhermYhljQJSGlFKUaBVN6ANoFkdAnRzGqPwNLHV9lChoBmgJaA9DCO6Yuis7P2lAlIaUUpRoFU3oA2gWR0CdPHNNrTH9dX2UKGgGaAloD0MILZj4o6h6ZUCUhpRSlGgVTegDaBZHQJ0+MyckMTh1fZQoaAZoCWgPQwj9EvHW+QZfQJSGlFKUaBVN6ANoFkdAnT85mh/RV3V9lChoBmgJaA9DCKJESx7PZ2NAlIaUUpRoFU3oA2gWR0CdRYGucMEzdX2UKGgGaAloD0MIt9CVCNSuY0CUhpRSlGgVTegDaBZHQJ1GFMlC1JF1fZQoaAZoCWgPQwgjpG5nXylfQJSGlFKUaBVN6ANoFkdAnUhIH5aePXV9lChoBmgJaA9DCKgavRqgqWFAlIaUUpRoFU3oA2gWR0CdSZqXF98adX2UKGgGaAloD0MIhGVs6OYwaECUhpRSlGgVTegDaBZHQJ1KvEyckMV1fZQoaAZoCWgPQwgjLgCNUhRiQJSGlFKUaBVN6ANoFkdAnU7TAzpHJHV9lChoBmgJaA9DCFBtcCL6rlxAlIaUUpRoFU3oA2gWR0CdUJLhaTwEdX2UKGgGaAloD0MI6DHKM6/Hb0CUhpRSlGgVTWgDaBZHQJ1VbF+/gzh1fZQoaAZoCWgPQwgKur2ksb5tQJSGlFKUaBVNNwFoFkdAnWIOlj3Eh3V9lChoBmgJaA9DCH8uGjIebG5AlIaUUpRoFU2tAmgWR0CdY88BdUsGdX2UKGgGaAloD0MIe0ljtA7YYUCUhpRSlGgVTegDaBZHQJ1r5yp71I11fZQoaAZoCWgPQwi9baZCvK1kQJSGlFKUaBVN6ANoFkdAnXNfrWy1NXV9lChoBmgJaA9DCMZsyaqIrGVAlIaUUpRoFU3oA2gWR0CdddDD0lJIdX2UKGgGaAloD0MIRidLrffxYUCUhpRSlGgVTegDaBZHQJ13gO7QLNR1fZQoaAZoCWgPQwiXyXA8H/tiQJSGlFKUaBVN6ANoFkdAnZRq+WWyDHV9lChoBmgJaA9DCI9U3/lFc2FAlIaUUpRoFU3oA2gWR0CdlxlkYoAodX2UKGgGaAloD0MIMdP2r6xtZUCUhpRSlGgVTegDaBZHQJ2YkNy5qdp1fZQoaAZoCWgPQwhb6iCvh9hkQJSGlFKUaBVN6ANoFkdAnaIDye7L+3V9lChoBmgJaA9DCODYs+cyFmdAlIaUUpRoFU3oA2gWR0CdovP/rB0qdX2UKGgGaAloD0MIfjUHCOYBY0CUhpRSlGgVTegDaBZHQJ2luom5UcZ1fZQoaAZoCWgPQwjL8nUZ/tdaQJSGlFKUaBVN6ANoFkdAnacHSKFZgXV9lChoBmgJaA9DCLprCfmgxWhAlIaUUpRoFU3oA2gWR0Cdq/KRdQfqdX2UKGgGaAloD0MI/OB86lj6ZUCUhpRSlGgVTegDaBZHQJ2tiRKYiPh1fZQoaAZoCWgPQwjqzhPP2dNkQJSGlFKUaBVN6ANoFkdAnbHr5/LDAXV9lChoBmgJaA9DCGCwG7YtiEtAlIaUUpRoFUvpaBZHQJ2y1H3Dej51fZQoaAZoCWgPQwiJl6dzRSdoQJSGlFKUaBVN6ANoFkdAnboiwnpjc3V9lChoBmgJaA9DCAXEJFxIxGNAlIaUUpRoFU3oA2gWR0CduyVFQVKxdX2UKGgGaAloD0MIMh8Q6AwGcUCUhpRSlGgVTc8DaBZHQJ2/l4rz5Gl1fZQoaAZoCWgPQwipoQ3ABrVdQJSGlFKUaBVN6ANoFkdAncld+1Bt13V9lChoBmgJaA9DCPJh9rKtCXFAlIaUUpRoFU3GA2gWR0CdyfKujh1ldX2UKGgGaAloD0MI9MMI4dHWa0CUhpRSlGgVTc8DaBZHQJ3MQuVX3g11fZQoaAZoCWgPQwhvK702mxFvQJSGlFKUaBVNmwFoFkdAncy4oAn2I3V9lChoBmgJaA9DCP7yyYrhqgZAlIaUUpRoFUv5aBZHQJ3QxwZOzpp1fZQoaAZoCWgPQwi536EoUNViQJSGlFKUaBVN6ANoFkdAndfljEvTPXV9lChoBmgJaA9DCGkbf6Ky4WNAlIaUUpRoFU3oA2gWR0Cd8QWtU4rCdX2UKGgGaAloD0MIgPChRMs9ZECUhpRSlGgVTegDaBZHQJ3x9KFqSHN1fZQoaAZoCWgPQwjlettMhehxQJSGlFKUaBVNJwJoFkdAnfWbExZdOnV9lChoBmgJaA9DCCF00CUct2NAlIaUUpRoFU3oA2gWR0Cd98X0XgtOdX2UKGgGaAloD0MIghq+hfUAZECUhpRSlGgVTegDaBZHQJ34SiUPhAJ1fZQoaAZoCWgPQwiP4EbKFkVnQJSGlFKUaBVN6ANoFkdAnftf779AHHV9lChoBmgJaA9DCJ4/bVSn9V5AlIaUUpRoFU3oA2gWR0Cd/92phnandX2UKGgGaAloD0MIgUBn0ia9bkCUhpRSlGgVTfYCaBZHQJ4Ars/pt791fZQoaAZoCWgPQwii0LLuH65hQJSGlFKUaBVN6ANoFkdAngFTXBguy3V9lChoBmgJaA9DCPutnShJu3FAlIaUUpRoFU1XAmgWR0CeA/0Dlo12dX2UKGgGaAloD0MI1ejVAKXlb0CUhpRSlGgVTTsCaBZHQJ4Epj0+TvB1fZQoaAZoCWgPQwhuaqD5nAVnQJSGlFKUaBVN6ANoFkdAngS7kGRmsnV9lChoBmgJaA9DCEc4LXjRFwVAlIaUUpRoFUvJaBZHQJ4FDqs2ehB1fZQoaAZoCWgPQwjRWPs72z9vQJSGlFKUaBVNpQFoFkdAngV5uVHFxXV9lChoBmgJaA9DCHzw2qVNs3BAlIaUUpRoFU0zAWgWR0CeBjQ6ZH/cdX2UKGgGaAloD0MIAfkSKjh+cECUhpRSlGgVTQ0CaBZHQJ4IuNkvsZ51fZQoaAZoCWgPQwjvqgfMQxptQJSGlFKUaBVNdAJoFkdAngmNbLU1AXV9lChoBmgJaA9DCAEydOwgsW5AlIaUUpRoFU23A2gWR0CeF+soUi6hdX2UKGgGaAloD0MIkzfAzHf/b0CUhpRSlGgVTXoBaBZHQJ4bY8FINEx1fZQoaAZoCWgPQwgOn3QiQQFxQJSGlFKUaBVN6AFoFkdAnhyRB/qgRXV9lChoBmgJaA9DCEKygAncnmFAlIaUUpRoFU3oA2gWR0CeHaL0z0pWdX2UKGgGaAloD0MIwDxkysd8cECUhpRSlGgVTVACaBZHQJ48MPQOWjZ1fZQoaAZoCWgPQwhPIOwUKz1mQJSGlFKUaBVN6ANoFkdAnjyAWnCO3nV9lChoBmgJaA9DCASvljuzB3FAlIaUUpRoFU2MAmgWR0CePn0IC2c8dX2UKGgGaAloD0MIH/et1skdcECUhpRSlGgVTT0CaBZHQJ4/AZrHlwN1fZQoaAZoCWgPQwhLH7qgvstiQJSGlFKUaBVN6ANoFkdAnkAx5X2du3V9lChoBmgJaA9DCCiCOA8nr2tAlIaUUpRoFU1pAWgWR0CeQoCNS619dX2UKGgGaAloD0MIX2Is0y9PZECUhpRSlGgVTegDaBZHQJ5CxnXd0q91fZQoaAZoCWgPQwiH3Aw3oDJwQJSGlFKUaBVN5AJoFkdAnkM1ea8Yh3V9lChoBmgJaA9DCFioNc37B3BAlIaUUpRoFU1XAWgWR0CeRDOby6MBdX2UKGgGaAloD0MIoIfaNgzQbkCUhpRSlGgVTRwDaBZHQJ5H7l90A951fZQoaAZoCWgPQwiEoKNVLbBdQJSGlFKUaBVN6ANoFkdAnkupqynk1nV9lChoBmgJaA9DCC1fl+G/sGVAlIaUUpRoFU3oA2gWR0CeTZ6F/QSjdX2UKGgGaAloD0MIE38UdWYba0CUhpRSlGgVTbQDaBZHQJ5OHWBjFyd1fZQoaAZoCWgPQwjE6/oFu0hxQJSGlFKUaBVNTgFoFkdAnk83AIppe3V9lChoBmgJaA9DCDNqvkp+8HBAlIaUUpRoFU0xAWgWR0CeUFjJMg2ZdX2UKGgGaAloD0MIBTI7i97pMkCUhpRSlGgVS+loFkdAnlDHLFGXonV9lChoBmgJaA9DCFu0AG3rdXBAlIaUUpRoFU0dAWgWR0CeU//BFd9ldX2UKGgGaAloD0MI86/llev2ZECUhpRSlGgVTegDaBZHQJ5Yk44p+c91fZQoaAZoCWgPQwghdxGmqHlyQJSGlFKUaBVNCQNoFkdAnliVJg9eQnV9lChoBmgJaA9DCKIm+nwU2m5AlIaUUpRoFU0wAWgWR0CeWgs0HhS+dX2UKGgGaAloD0MIghq+hTX/cECUhpRSlGgVTdwBaBZHQJ5bPn4fwJB1fZQoaAZoCWgPQwg4EJIFzHdyQJSGlFKUaBVNMAFoFkdAnmOE6HTJAHV9lChoBmgJaA9DCKvq5Xfad3FAlIaUUpRoFU3UAmgWR0CeY+3JxNqQdX2UKGgGaAloD0MI9n6jHbdZZ0CUhpRSlGgVTegDaBZHQJ5nwXAM2FZ1fZQoaAZoCWgPQwhvLCgMyilrQJSGlFKUaBVN8QJoFkdAnm6BDw6QvHV9lChoBmgJaA9DCNApyM/GMHBAlIaUUpRoFU0kAmgWR0CebsCgK4QSdX2UKGgGaAloD0MIMdKL2v2JcECUhpRSlGgVTXABaBZHQJ5vS2rn1Wd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05e5e98a4b33a8aa2c3b3e8254c52d19c59cf19c7d3bd9885065270fd814fbe6
3
+ size 147425
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fdf339a3670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fdf339a3700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fdf339a3790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fdf339a3820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fdf339a38b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fdf339a3940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fdf339a39d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fdf339a3a60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fdf339a3af0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fdf339a3b80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fdf339a3c10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fdf339a3ca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fdf3393f040>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1680255175690084246,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2ilj3DmQ66enZJu0n+/7VZ2/Q5WipwOgAAAAAAAIA/Zoh3vK7NiLpIcnw6OsSCNgwplLk99JK5AACAPwAAgD9mlkk9XJdQumhZdTrefoI1tLnxOrV9kLkAAIA/AACAP2Y+Y7vDKTy6P0CENZz2KjAJyo06GiS/tAAAgD8AAIA/aGufvsAjHT8iMTQ+nmdxvmg0ib1HkxY9AAAAAAAAAAAmPZI9Z2wkP+46xzzyW1y+YxkQvJmFEzsAAAAAAAAAAFp98z17QtO63sDQtiRelzPh+lu7UrL7NQAAgD8AAIA/LfgPPuwRhTp70Fm7oyVHuM1Kfzwr5n86AACAPwAAgD9mSAE8w20Kul6r2DpENlM1x1Nvu9qGAboAAIA/AACAP2Zm1jjROK49LtdSPXC4cb68AoQ9zzOnOwAAAAAAAAAA5ggtPVLQ5blaiLo7Qoe2N9lZkrvJuoI2AACAPwAAgD9arIU91+N+OJ6zU7ta+Js3mp+Ku6sNB7cAAAAAAAAAACDrFD5SIqa7uNdQuPLtsTVNkwC9smp6NwAAgD8AAIA/RpiAvh2ZWD/7e1k+7UzBvt2Zxb2mUIc9AAAAAAAAAADm+i+9XKtXuq3G0Tv2Xco3A6vGOamthjYAAIA/AACAPwDwZDx7bIi6QkPvOmJsxDVRVyi7zRALugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIn+bkRab8Y0CUhpRSlIwBbJRN6AOMAXSUR0Cc4N2qkuYhdX2UKGgGaAloD0MI4bIKm4HuYECUhpRSlGgVTegDaBZHQJziPTBqKxd1fZQoaAZoCWgPQwjrVPmekTNkQJSGlFKUaBVN6ANoFkdAnOsQrQPZqXV9lChoBmgJaA9DCChHAaLg6WhAlIaUUpRoFU3oA2gWR0Cc6/nNxEORdX2UKGgGaAloD0MIyeU/pN8jZECUhpRSlGgVTegDaBZHQJzvJH9WIXV1fZQoaAZoCWgPQwiD29rCc4BkQJSGlFKUaBVN6ANoFkdAnPDc7EHdGnV9lChoBmgJaA9DCPet1olLUWNAlIaUUpRoFU3oA2gWR0Cc8k1A7gbZdX2UKGgGaAloD0MImnrdIjDHY0CUhpRSlGgVTegDaBZHQJz17Sqlxfh1fZQoaAZoCWgPQwgvMgG/xolnQJSGlFKUaBVN6ANoFkdAnPd6L876pHV9lChoBmgJaA9DCEVGByRhy2BAlIaUUpRoFU3oA2gWR0CdBHic5Ke1dX2UKGgGaAloD0MIdHrejQVWZkCUhpRSlGgVTegDaBZHQJ0PRr56+nJ1fZQoaAZoCWgPQwjf3jXoS5RgQJSGlFKUaBVN6ANoFkdAnRcSlvZRK3V9lChoBmgJaA9DCDOHpBbKPGNAlIaUUpRoFU3oA2gWR0CdGX78Nx2jdX2UKGgGaAloD0MIqd2vAvwuYUCUhpRSlGgVTegDaBZHQJ0bJOP/7zl1fZQoaAZoCWgPQwhEhermYhljQJSGlFKUaBVN6ANoFkdAnRzGqPwNLHV9lChoBmgJaA9DCO6Yuis7P2lAlIaUUpRoFU3oA2gWR0CdPHNNrTH9dX2UKGgGaAloD0MILZj4o6h6ZUCUhpRSlGgVTegDaBZHQJ0+MyckMTh1fZQoaAZoCWgPQwj9EvHW+QZfQJSGlFKUaBVN6ANoFkdAnT85mh/RV3V9lChoBmgJaA9DCKJESx7PZ2NAlIaUUpRoFU3oA2gWR0CdRYGucMEzdX2UKGgGaAloD0MIt9CVCNSuY0CUhpRSlGgVTegDaBZHQJ1GFMlC1JF1fZQoaAZoCWgPQwgjpG5nXylfQJSGlFKUaBVN6ANoFkdAnUhIH5aePXV9lChoBmgJaA9DCKgavRqgqWFAlIaUUpRoFU3oA2gWR0CdSZqXF98adX2UKGgGaAloD0MIhGVs6OYwaECUhpRSlGgVTegDaBZHQJ1KvEyckMV1fZQoaAZoCWgPQwgjLgCNUhRiQJSGlFKUaBVN6ANoFkdAnU7TAzpHJHV9lChoBmgJaA9DCFBtcCL6rlxAlIaUUpRoFU3oA2gWR0CdUJLhaTwEdX2UKGgGaAloD0MI6DHKM6/Hb0CUhpRSlGgVTWgDaBZHQJ1VbF+/gzh1fZQoaAZoCWgPQwgKur2ksb5tQJSGlFKUaBVNNwFoFkdAnWIOlj3Eh3V9lChoBmgJaA9DCH8uGjIebG5AlIaUUpRoFU2tAmgWR0CdY88BdUsGdX2UKGgGaAloD0MIe0ljtA7YYUCUhpRSlGgVTegDaBZHQJ1r5yp71I11fZQoaAZoCWgPQwi9baZCvK1kQJSGlFKUaBVN6ANoFkdAnXNfrWy1NXV9lChoBmgJaA9DCMZsyaqIrGVAlIaUUpRoFU3oA2gWR0CdddDD0lJIdX2UKGgGaAloD0MIRidLrffxYUCUhpRSlGgVTegDaBZHQJ13gO7QLNR1fZQoaAZoCWgPQwiXyXA8H/tiQJSGlFKUaBVN6ANoFkdAnZRq+WWyDHV9lChoBmgJaA9DCI9U3/lFc2FAlIaUUpRoFU3oA2gWR0CdlxlkYoAodX2UKGgGaAloD0MIMdP2r6xtZUCUhpRSlGgVTegDaBZHQJ2YkNy5qdp1fZQoaAZoCWgPQwhb6iCvh9hkQJSGlFKUaBVN6ANoFkdAnaIDye7L+3V9lChoBmgJaA9DCODYs+cyFmdAlIaUUpRoFU3oA2gWR0CdovP/rB0qdX2UKGgGaAloD0MIfjUHCOYBY0CUhpRSlGgVTegDaBZHQJ2luom5UcZ1fZQoaAZoCWgPQwjL8nUZ/tdaQJSGlFKUaBVN6ANoFkdAnacHSKFZgXV9lChoBmgJaA9DCLprCfmgxWhAlIaUUpRoFU3oA2gWR0Cdq/KRdQfqdX2UKGgGaAloD0MI/OB86lj6ZUCUhpRSlGgVTegDaBZHQJ2tiRKYiPh1fZQoaAZoCWgPQwjqzhPP2dNkQJSGlFKUaBVN6ANoFkdAnbHr5/LDAXV9lChoBmgJaA9DCGCwG7YtiEtAlIaUUpRoFUvpaBZHQJ2y1H3Dej51fZQoaAZoCWgPQwiJl6dzRSdoQJSGlFKUaBVN6ANoFkdAnboiwnpjc3V9lChoBmgJaA9DCAXEJFxIxGNAlIaUUpRoFU3oA2gWR0CduyVFQVKxdX2UKGgGaAloD0MIMh8Q6AwGcUCUhpRSlGgVTc8DaBZHQJ2/l4rz5Gl1fZQoaAZoCWgPQwipoQ3ABrVdQJSGlFKUaBVN6ANoFkdAncld+1Bt13V9lChoBmgJaA9DCPJh9rKtCXFAlIaUUpRoFU3GA2gWR0CdyfKujh1ldX2UKGgGaAloD0MI9MMI4dHWa0CUhpRSlGgVTc8DaBZHQJ3MQuVX3g11fZQoaAZoCWgPQwhvK702mxFvQJSGlFKUaBVNmwFoFkdAncy4oAn2I3V9lChoBmgJaA9DCP7yyYrhqgZAlIaUUpRoFUv5aBZHQJ3QxwZOzpp1fZQoaAZoCWgPQwi536EoUNViQJSGlFKUaBVN6ANoFkdAndfljEvTPXV9lChoBmgJaA9DCGkbf6Ky4WNAlIaUUpRoFU3oA2gWR0Cd8QWtU4rCdX2UKGgGaAloD0MIgPChRMs9ZECUhpRSlGgVTegDaBZHQJ3x9KFqSHN1fZQoaAZoCWgPQwjlettMhehxQJSGlFKUaBVNJwJoFkdAnfWbExZdOnV9lChoBmgJaA9DCCF00CUct2NAlIaUUpRoFU3oA2gWR0Cd98X0XgtOdX2UKGgGaAloD0MIghq+hfUAZECUhpRSlGgVTegDaBZHQJ34SiUPhAJ1fZQoaAZoCWgPQwiP4EbKFkVnQJSGlFKUaBVN6ANoFkdAnftf779AHHV9lChoBmgJaA9DCJ4/bVSn9V5AlIaUUpRoFU3oA2gWR0Cd/92phnandX2UKGgGaAloD0MIgUBn0ia9bkCUhpRSlGgVTfYCaBZHQJ4Ars/pt791fZQoaAZoCWgPQwii0LLuH65hQJSGlFKUaBVN6ANoFkdAngFTXBguy3V9lChoBmgJaA9DCPutnShJu3FAlIaUUpRoFU1XAmgWR0CeA/0Dlo12dX2UKGgGaAloD0MI1ejVAKXlb0CUhpRSlGgVTTsCaBZHQJ4Epj0+TvB1fZQoaAZoCWgPQwhuaqD5nAVnQJSGlFKUaBVN6ANoFkdAngS7kGRmsnV9lChoBmgJaA9DCEc4LXjRFwVAlIaUUpRoFUvJaBZHQJ4FDqs2ehB1fZQoaAZoCWgPQwjRWPs72z9vQJSGlFKUaBVNpQFoFkdAngV5uVHFxXV9lChoBmgJaA9DCHzw2qVNs3BAlIaUUpRoFU0zAWgWR0CeBjQ6ZH/cdX2UKGgGaAloD0MIAfkSKjh+cECUhpRSlGgVTQ0CaBZHQJ4IuNkvsZ51fZQoaAZoCWgPQwjvqgfMQxptQJSGlFKUaBVNdAJoFkdAngmNbLU1AXV9lChoBmgJaA9DCAEydOwgsW5AlIaUUpRoFU23A2gWR0CeF+soUi6hdX2UKGgGaAloD0MIkzfAzHf/b0CUhpRSlGgVTXoBaBZHQJ4bY8FINEx1fZQoaAZoCWgPQwgOn3QiQQFxQJSGlFKUaBVN6AFoFkdAnhyRB/qgRXV9lChoBmgJaA9DCEKygAncnmFAlIaUUpRoFU3oA2gWR0CeHaL0z0pWdX2UKGgGaAloD0MIwDxkysd8cECUhpRSlGgVTVACaBZHQJ48MPQOWjZ1fZQoaAZoCWgPQwhPIOwUKz1mQJSGlFKUaBVN6ANoFkdAnjyAWnCO3nV9lChoBmgJaA9DCASvljuzB3FAlIaUUpRoFU2MAmgWR0CePn0IC2c8dX2UKGgGaAloD0MIH/et1skdcECUhpRSlGgVTT0CaBZHQJ4/AZrHlwN1fZQoaAZoCWgPQwhLH7qgvstiQJSGlFKUaBVN6ANoFkdAnkAx5X2du3V9lChoBmgJaA9DCCiCOA8nr2tAlIaUUpRoFU1pAWgWR0CeQoCNS619dX2UKGgGaAloD0MIX2Is0y9PZECUhpRSlGgVTegDaBZHQJ5CxnXd0q91fZQoaAZoCWgPQwiH3Aw3oDJwQJSGlFKUaBVN5AJoFkdAnkM1ea8Yh3V9lChoBmgJaA9DCFioNc37B3BAlIaUUpRoFU1XAWgWR0CeRDOby6MBdX2UKGgGaAloD0MIoIfaNgzQbkCUhpRSlGgVTRwDaBZHQJ5H7l90A951fZQoaAZoCWgPQwiEoKNVLbBdQJSGlFKUaBVN6ANoFkdAnkupqynk1nV9lChoBmgJaA9DCC1fl+G/sGVAlIaUUpRoFU3oA2gWR0CeTZ6F/QSjdX2UKGgGaAloD0MIE38UdWYba0CUhpRSlGgVTbQDaBZHQJ5OHWBjFyd1fZQoaAZoCWgPQwjE6/oFu0hxQJSGlFKUaBVNTgFoFkdAnk83AIppe3V9lChoBmgJaA9DCDNqvkp+8HBAlIaUUpRoFU0xAWgWR0CeUFjJMg2ZdX2UKGgGaAloD0MIBTI7i97pMkCUhpRSlGgVS+loFkdAnlDHLFGXonV9lChoBmgJaA9DCFu0AG3rdXBAlIaUUpRoFU0dAWgWR0CeU//BFd9ldX2UKGgGaAloD0MI86/llev2ZECUhpRSlGgVTegDaBZHQJ5Yk44p+c91fZQoaAZoCWgPQwghdxGmqHlyQJSGlFKUaBVNCQNoFkdAnliVJg9eQnV9lChoBmgJaA9DCKIm+nwU2m5AlIaUUpRoFU0wAWgWR0CeWgs0HhS+dX2UKGgGaAloD0MIghq+hTX/cECUhpRSlGgVTdwBaBZHQJ5bPn4fwJB1fZQoaAZoCWgPQwg4EJIFzHdyQJSGlFKUaBVNMAFoFkdAnmOE6HTJAHV9lChoBmgJaA9DCKvq5Xfad3FAlIaUUpRoFU3UAmgWR0CeY+3JxNqQdX2UKGgGaAloD0MI9n6jHbdZZ0CUhpRSlGgVTegDaBZHQJ5nwXAM2FZ1fZQoaAZoCWgPQwhvLCgMyilrQJSGlFKUaBVN8QJoFkdAnm6BDw6QvHV9lChoBmgJaA9DCNApyM/GMHBAlIaUUpRoFU0kAmgWR0CebsCgK4QSdX2UKGgGaAloD0MIMdKL2v2JcECUhpRSlGgVTXABaBZHQJ5vS2rn1Wd1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:efbd6b3441fceae56fa51ca775474d661f5ff0940ad8ff5a5ba7ca9903fcd4c5
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:283d489cae2a0dbb0b05ef78eafebbfc927cc9ea966950e892f37c4940980b9e
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (210 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 259.8139617339416, "std_reward": 15.300717629393198, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-31T09:59:25.494953"}