File size: 27,393 Bytes
aff4f3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 |
# fmt: off
from __future__ import annotations
from dataclasses import dataclass
import torch
import torch.utils.checkpoint
from scipy.stats import norm
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_utils import PreTrainedModel
from transformers.models.llama.configuration_llama import LlamaConfig
from transformers.models.llama.modeling_llama import (
LLAMA_ATTENTION_CLASSES,
LlamaRMSNorm,
)
from transformers.utils import ModelOutput, logging
logger = logging.get_logger(__name__)
@dataclass
class MonetModelOutputWithPast(ModelOutput):
last_hidden_state: torch.FloatTensor = None
past_key_values: tuple[tuple[torch.FloatTensor]] | None = None
hidden_states: tuple[torch.FloatTensor, ...] | None = None
attentions: tuple[torch.FloatTensor, ...] | None = None
router_probs: tuple[tuple[torch.FloatTensor, ...], ...] | None = None
@dataclass
class MonetCausalLMOutputWithPast(ModelOutput):
loss: torch.FloatTensor | None = None
aux_loss: torch.FloatTensor | None = None
logits: torch.FloatTensor = None
past_key_values: tuple[tuple[torch.FloatTensor]] | None = None
hidden_states: tuple[torch.FloatTensor, ...] | None = None
attentions: tuple[torch.FloatTensor, ...] | None = None
router_probs: tuple[tuple[torch.FloatTensor, ...], ...] | None = None
class MonetConfig(LlamaConfig):
model_type = "monet"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=32000,
hidden_size=4096,
intermediate_size=None,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="relu2",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
pretraining_tp=1,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
mlp_bias=None,
moe_dim=8,
moe_heads=8,
moe_experts=512,
moe_topk=32,
moe_groups=4,
moe_decompose="vertical",
output_router_probs=False,
**kwargs,
):
self.moe_dim = moe_dim
self.moe_heads = moe_heads
self.moe_experts = moe_experts
self.moe_topk = moe_topk
self.moe_groups = moe_groups
self.moe_decompose = moe_decompose
self.output_router_probs = output_router_probs
super().__init__(
vocab_size=vocab_size,
hidden_size=hidden_size,
intermediate_size=intermediate_size,
num_hidden_layers=num_hidden_layers,
num_attention_heads=num_attention_heads,
num_key_value_heads=num_key_value_heads,
hidden_act=hidden_act,
max_position_embeddings=max_position_embeddings,
initializer_range=initializer_range,
rms_norm_eps=rms_norm_eps,
use_cache=use_cache,
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
pretraining_tp=pretraining_tp,
tie_word_embeddings=tie_word_embeddings,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
attention_bias=attention_bias,
attention_dropout=attention_dropout,
mlp_bias=mlp_bias,
**kwargs,
)
class MonetRouter(nn.Module):
def __init__(self, config: MonetConfig):
super().__init__()
self.config = config
flatten_shape = config.moe_heads * config.moe_experts
self.w1 = nn.Linear(config.hidden_size, flatten_shape, bias=False)
self.w2 = nn.Linear(config.hidden_size, flatten_shape, bias=False)
self.norm1 = nn.BatchNorm1d(config.moe_heads, affine=False)
self.norm2 = nn.BatchNorm1d(config.moe_heads, affine=False)
def forward(self, x: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
g1z = self.w1(x).unflatten(-1, (self.config.moe_heads, -1)).float()
g2z = self.w2(x).unflatten(-1, (self.config.moe_heads, -1)).float()
g1n = self.norm1(g1z.transpose(2, 3).flatten(0, -2))
g2n = self.norm2(g2z.transpose(2, 3).flatten(0, -2))
g1n = g1n.view(g1z.size(0), g1z.size(1), g1z.size(3), -1).transpose(2, 3)
g2n = g2n.view(g2z.size(0), g2z.size(1), g2z.size(3), -1).transpose(2, 3)
sigma = float(norm.ppf(1 - self.config.moe_topk / self.config.moe_experts))
g1s = g1n.amax(-1, keepdim=True).clamp_max_(sigma)
g2s = g2n.amax(-1, keepdim=True).clamp_max_(sigma)
g1 = nn.functional.softmax(torch.where(g1n >= g1s, g1z, -1e10), dim=-1)
g2 = nn.functional.softmax(torch.where(g2n >= g2s, g2z, -1e10), dim=-1)
return g1, g2
class MonetMoVDE(nn.Module):
def __init__(self, config: MonetConfig):
super().__init__()
self.config = config
self.act_fn = ACT2FN[config.hidden_act]
flatten_shape = config.moe_experts * config.moe_dim // 2
self.u1 = nn.Linear(config.hidden_size, flatten_shape)
self.u2 = nn.Linear(config.hidden_size, flatten_shape)
self.v11 = nn.Linear(flatten_shape, config.hidden_size // 2, bias=False)
self.v12 = nn.Linear(flatten_shape, config.hidden_size // 2, bias=False)
self.v21 = nn.Linear(flatten_shape, config.hidden_size // 2, bias=False)
self.v22 = nn.Linear(flatten_shape, config.hidden_size // 2, bias=False)
self.b1 = nn.Parameter(torch.zeros(config.moe_experts, config.hidden_size // 2))
self.b2 = nn.Parameter(torch.zeros(config.moe_experts, config.hidden_size // 2))
def forward(
self, x: torch.Tensor, g1: torch.Tensor, g2: torch.Tensor
) -> torch.Tensor:
g1, g2 = g1.type_as(x), g2.type_as(x)
x1 = self.act_fn(self.u1(x).unflatten(-1, (self.config.moe_experts, -1)))
x2 = self.act_fn(self.u2(x).unflatten(-1, (self.config.moe_experts, -1)))
x11 = self.v11(torch.einsum("btim,bthi->btim", x1, g1).flatten(-2))
x12 = self.v12(torch.einsum("btjm,bthj,bthi->btim", x2, g2, g1).flatten(-2))
x13 = torch.einsum("bthi,id->btd", g1, self.b1.type_as(x))
x21 = self.v21(torch.einsum("btim,bthi,bthj->btjm", x1, g1, g2).flatten(-2))
x22 = self.v22(torch.einsum("btjm,bthj->btjm", x2, g2).flatten(-2))
x23 = torch.einsum("bthj,jd->btd", g2, self.b2.type_as(x))
return torch.cat((x11 + x12 + x13, x21 + x22 + x23), dim=-1)
class MonetMoHDE(nn.Module):
def __init__(self, config: MonetConfig):
super().__init__()
self.config = config
self.act_fn = ACT2FN[config.hidden_act]
flatten_shape = config.moe_experts * config.moe_dim
self.u = nn.Linear(config.hidden_size, flatten_shape)
self.v = nn.Linear(flatten_shape, config.hidden_size, bias=False)
self.b = nn.Parameter(torch.zeros(config.moe_experts, config.hidden_size))
def forward(
self, x: torch.Tensor, g1: torch.Tensor, g2: torch.Tensor
) -> torch.Tensor:
g1, g2 = g1.type_as(x), g2.type_as(x)
x = self.act_fn(self.u(x).unflatten(-1, (self.config.moe_experts, -1)))
x = self.v(torch.einsum("btim,bthi,bthj->btjm", x, g1, g2).flatten(-2))
return x + torch.einsum("bthj,jd->btd", g2, self.b)
class MonetDecoderLayer(nn.Module):
def __init__(self, config: MonetConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](
config=config, layer_idx=layer_idx
)
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = LlamaRMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
if config.moe_decompose == "vertical":
self.moe = MonetMoVDE(config)
elif config.moe_decompose == "horizontal":
self.moe = MonetMoHDE(config)
if layer_idx % config.moe_groups == 0:
self.router = MonetRouter(config).requires_grad_(False)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor | None = None,
position_ids: torch.LongTensor | None = None,
past_key_value: Cache | None = None,
previous_router_probs: tuple[torch.Tensor, torch.Tensor] | None = None,
output_attentions: bool | None = False,
use_cache: bool | None = False,
cache_position: torch.LongTensor | None = None,
**kwargs,
) -> tuple[torch.FloatTensor, ...]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
g1, g2 = (
self.router(hidden_states)
if hasattr(self, "router")
else previous_router_probs
)
hidden_states = self.moe(hidden_states, g1, g2)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs + ((g1, g2) if hasattr(self, "router") else None,)
class MonetPreTrainedModel(PreTrainedModel):
config_class = MonetConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["MonetDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class MonetModel(MonetPreTrainedModel):
def __init__(self, config: MonetConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) # noqa
self.layers = nn.ModuleList([MonetDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]) # noqa
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: torch.Tensor | None = None,
position_ids: torch.LongTensor | None = None,
past_key_values: Cache | list[torch.FloatTensor] | None = None,
inputs_embeds: torch.FloatTensor | None = None,
use_cache: bool | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
output_router_probs: bool | None = None,
return_dict: bool | None = None,
cache_position: torch.LongTensor | None = None,
) -> tuple[torch.Tensor, ...] | MonetModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions # noqa
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states # noqa
output_router_probs = output_router_probs if output_router_probs is not None else self.config.output_router_probs # noqa
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict # noqa
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one") # noqa
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.") # noqa
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
return_legacy_cache = False
if use_cache and not isinstance(past_key_values, Cache): # kept for BC (non `Cache` `past_key_values` inputs) # noqa
return_legacy_cache = True
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
logger.warning_once(
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. " # noqa
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)" # noqa
)
if cache_position is None:
past_seen_tokens = (
past_key_values.get_seq_length() if past_key_values is not None else 0
)
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device) # noqa
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions) # noqa
# embed positions
hidden_states = inputs_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_router_probs = () if output_router_probs else None
previous_router_probs, next_decoder_cache = None, None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
previous_router_probs,
output_attentions,
use_cache,
cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
previous_router_probs=previous_router_probs,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if output_router_probs:
all_router_probs += (layer_outputs[-1],)
previous_router_probs = (
layer_outputs[-1]
if layer_outputs[-1] is not None
else previous_router_probs
)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_legacy_cache:
next_cache = next_cache.to_legacy_cache()
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_probs] if v is not None) # noqa
return MonetModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
router_probs=all_router_probs,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 # noqa
using_static_cache = isinstance(past_key_values, StaticCache)
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: # noqa
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_length()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
if attention_mask is not None and attention_mask.dim() == 4:
if attention_mask.max() != 0:
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`") # noqa
causal_mask = attention_mask
else:
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device # noqa
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) # noqa
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1) # noqa
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit # noqa
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] # noqa
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(padding_mask, min_dtype) # noqa
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) # noqa
return causal_mask
class MonetForCausalLM(MonetPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = MonetModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: torch.Tensor | None = None,
position_ids: torch.LongTensor | None = None,
past_key_values: Cache | list[torch.FloatTensor] | None = None,
inputs_embeds: torch.FloatTensor | None = None,
labels: torch.LongTensor | None = None,
use_cache: bool | None = None,
output_attentions: bool | None = None,
output_hidden_states: bool | None = None,
output_router_probs: bool | None = None,
return_dict: bool | None = None,
cache_position: torch.LongTensor | None = None,
) -> tuple[torch.Tensor, ...] | MonetCausalLMOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions # noqa
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states # noqa
output_router_probs = output_router_probs if output_router_probs is not None else self.config.output_router_probs # noqa
return_dict = return_dict if return_dict is not None else self.config.use_return_dict # noqa
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_probs=output_router_probs,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits.float()
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return MonetCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
router_probs=outputs.router_probs,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
use_cache=True,
**kwargs,
):
past_length = 0
if past_key_values is not None:
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length() # noqa
max_cache_length = (
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
if past_key_values.get_max_length() is not None
else None
)
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length) # noqa
# Keep only the unprocessed tokens:
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: # noqa
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
# input_ids based on the past_length.
elif past_length < input_ids.shape[1]:
input_ids = input_ids[:, past_length:]
if (
max_cache_length is not None
and attention_mask is not None
and cache_length + input_ids.shape[1] > max_cache_length
):
attention_mask = attention_mask[:, -max_cache_length:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
if inputs_embeds is not None and past_length == 0:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids.contiguous()}
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1] # noqa
if cache_position is None:
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device) # noqa
elif use_cache:
cache_position = cache_position[-input_length:]
model_inputs.update(
{
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), # noqa
)
return reordered_past
|