File size: 27,393 Bytes
aff4f3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
# fmt: off
from __future__ import annotations

from dataclasses import dataclass

import torch
import torch.utils.checkpoint
from scipy.stats import norm
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, StaticCache
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_utils import PreTrainedModel
from transformers.models.llama.configuration_llama import LlamaConfig
from transformers.models.llama.modeling_llama import (
    LLAMA_ATTENTION_CLASSES,
    LlamaRMSNorm,
)
from transformers.utils import ModelOutput, logging

logger = logging.get_logger(__name__)


@dataclass
class MonetModelOutputWithPast(ModelOutput):
    last_hidden_state: torch.FloatTensor = None
    past_key_values: tuple[tuple[torch.FloatTensor]] | None = None
    hidden_states: tuple[torch.FloatTensor, ...] | None = None
    attentions: tuple[torch.FloatTensor, ...] | None = None
    router_probs: tuple[tuple[torch.FloatTensor, ...], ...] | None = None


@dataclass
class MonetCausalLMOutputWithPast(ModelOutput):
    loss: torch.FloatTensor | None = None
    aux_loss: torch.FloatTensor | None = None
    logits: torch.FloatTensor = None
    past_key_values: tuple[tuple[torch.FloatTensor]] | None = None
    hidden_states: tuple[torch.FloatTensor, ...] | None = None
    attentions: tuple[torch.FloatTensor, ...] | None = None
    router_probs: tuple[tuple[torch.FloatTensor, ...], ...] | None = None


class MonetConfig(LlamaConfig):
    model_type = "monet"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=32000,
        hidden_size=4096,
        intermediate_size=None,
        num_hidden_layers=32,
        num_attention_heads=32,
        num_key_value_heads=None,
        hidden_act="relu2",
        max_position_embeddings=2048,
        initializer_range=0.02,
        rms_norm_eps=1e-6,
        use_cache=True,
        pad_token_id=None,
        bos_token_id=1,
        eos_token_id=2,
        pretraining_tp=1,
        tie_word_embeddings=False,
        rope_theta=10000.0,
        rope_scaling=None,
        attention_bias=False,
        attention_dropout=0.0,
        mlp_bias=None,
        moe_dim=8,
        moe_heads=8,
        moe_experts=512,
        moe_topk=32,
        moe_groups=4,
        moe_decompose="vertical",
        output_router_probs=False,
        **kwargs,
    ):
        self.moe_dim = moe_dim
        self.moe_heads = moe_heads
        self.moe_experts = moe_experts
        self.moe_topk = moe_topk
        self.moe_groups = moe_groups
        self.moe_decompose = moe_decompose
        self.output_router_probs = output_router_probs

        super().__init__(
            vocab_size=vocab_size,
            hidden_size=hidden_size,
            intermediate_size=intermediate_size,
            num_hidden_layers=num_hidden_layers,
            num_attention_heads=num_attention_heads,
            num_key_value_heads=num_key_value_heads,
            hidden_act=hidden_act,
            max_position_embeddings=max_position_embeddings,
            initializer_range=initializer_range,
            rms_norm_eps=rms_norm_eps,
            use_cache=use_cache,
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            pretraining_tp=pretraining_tp,
            tie_word_embeddings=tie_word_embeddings,
            rope_theta=rope_theta,
            rope_scaling=rope_scaling,
            attention_bias=attention_bias,
            attention_dropout=attention_dropout,
            mlp_bias=mlp_bias,
            **kwargs,
        )


class MonetRouter(nn.Module):
    def __init__(self, config: MonetConfig):
        super().__init__()
        self.config = config
        flatten_shape = config.moe_heads * config.moe_experts

        self.w1 = nn.Linear(config.hidden_size, flatten_shape, bias=False)
        self.w2 = nn.Linear(config.hidden_size, flatten_shape, bias=False)
        self.norm1 = nn.BatchNorm1d(config.moe_heads, affine=False)
        self.norm2 = nn.BatchNorm1d(config.moe_heads, affine=False)

    def forward(self, x: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
        g1z = self.w1(x).unflatten(-1, (self.config.moe_heads, -1)).float()
        g2z = self.w2(x).unflatten(-1, (self.config.moe_heads, -1)).float()

        g1n = self.norm1(g1z.transpose(2, 3).flatten(0, -2))
        g2n = self.norm2(g2z.transpose(2, 3).flatten(0, -2))
        g1n = g1n.view(g1z.size(0), g1z.size(1), g1z.size(3), -1).transpose(2, 3)
        g2n = g2n.view(g2z.size(0), g2z.size(1), g2z.size(3), -1).transpose(2, 3)

        sigma = float(norm.ppf(1 - self.config.moe_topk / self.config.moe_experts))
        g1s = g1n.amax(-1, keepdim=True).clamp_max_(sigma)
        g2s = g2n.amax(-1, keepdim=True).clamp_max_(sigma)

        g1 = nn.functional.softmax(torch.where(g1n >= g1s, g1z, -1e10), dim=-1)
        g2 = nn.functional.softmax(torch.where(g2n >= g2s, g2z, -1e10), dim=-1)
        return g1, g2


class MonetMoVDE(nn.Module):
    def __init__(self, config: MonetConfig):
        super().__init__()
        self.config = config
        self.act_fn = ACT2FN[config.hidden_act]
        flatten_shape = config.moe_experts * config.moe_dim // 2

        self.u1 = nn.Linear(config.hidden_size, flatten_shape)
        self.u2 = nn.Linear(config.hidden_size, flatten_shape)

        self.v11 = nn.Linear(flatten_shape, config.hidden_size // 2, bias=False)
        self.v12 = nn.Linear(flatten_shape, config.hidden_size // 2, bias=False)
        self.v21 = nn.Linear(flatten_shape, config.hidden_size // 2, bias=False)
        self.v22 = nn.Linear(flatten_shape, config.hidden_size // 2, bias=False)

        self.b1 = nn.Parameter(torch.zeros(config.moe_experts, config.hidden_size // 2))
        self.b2 = nn.Parameter(torch.zeros(config.moe_experts, config.hidden_size // 2))

    def forward(
        self, x: torch.Tensor, g1: torch.Tensor, g2: torch.Tensor
    ) -> torch.Tensor:
        g1, g2 = g1.type_as(x), g2.type_as(x)
        x1 = self.act_fn(self.u1(x).unflatten(-1, (self.config.moe_experts, -1)))
        x2 = self.act_fn(self.u2(x).unflatten(-1, (self.config.moe_experts, -1)))

        x11 = self.v11(torch.einsum("btim,bthi->btim", x1, g1).flatten(-2))
        x12 = self.v12(torch.einsum("btjm,bthj,bthi->btim", x2, g2, g1).flatten(-2))
        x13 = torch.einsum("bthi,id->btd", g1, self.b1.type_as(x))

        x21 = self.v21(torch.einsum("btim,bthi,bthj->btjm", x1, g1, g2).flatten(-2))
        x22 = self.v22(torch.einsum("btjm,bthj->btjm", x2, g2).flatten(-2))
        x23 = torch.einsum("bthj,jd->btd", g2, self.b2.type_as(x))

        return torch.cat((x11 + x12 + x13, x21 + x22 + x23), dim=-1)


class MonetMoHDE(nn.Module):
    def __init__(self, config: MonetConfig):
        super().__init__()
        self.config = config
        self.act_fn = ACT2FN[config.hidden_act]
        flatten_shape = config.moe_experts * config.moe_dim

        self.u = nn.Linear(config.hidden_size, flatten_shape)
        self.v = nn.Linear(flatten_shape, config.hidden_size, bias=False)
        self.b = nn.Parameter(torch.zeros(config.moe_experts, config.hidden_size))

    def forward(
        self, x: torch.Tensor, g1: torch.Tensor, g2: torch.Tensor
    ) -> torch.Tensor:
        g1, g2 = g1.type_as(x), g2.type_as(x)
        x = self.act_fn(self.u(x).unflatten(-1, (self.config.moe_experts, -1)))
        x = self.v(torch.einsum("btim,bthi,bthj->btjm", x, g1, g2).flatten(-2))
        return x + torch.einsum("bthj,jd->btd", g2, self.b)


class MonetDecoderLayer(nn.Module):
    def __init__(self, config: MonetConfig, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](
            config=config, layer_idx=layer_idx
        )
        self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = LlamaRMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )

        if config.moe_decompose == "vertical":
            self.moe = MonetMoVDE(config)
        elif config.moe_decompose == "horizontal":
            self.moe = MonetMoHDE(config)
        if layer_idx % config.moe_groups == 0:
            self.router = MonetRouter(config).requires_grad_(False)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor | None = None,
        position_ids: torch.LongTensor | None = None,
        past_key_value: Cache | None = None,
        previous_router_probs: tuple[torch.Tensor, torch.Tensor] | None = None,
        output_attentions: bool | None = False,
        use_cache: bool | None = False,
        cache_position: torch.LongTensor | None = None,
        **kwargs,
    ) -> tuple[torch.FloatTensor, ...]:
        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights, present_key_value = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            cache_position=cache_position,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        g1, g2 = (
            self.router(hidden_states)
            if hasattr(self, "router")
            else previous_router_probs
        )
        hidden_states = self.moe(hidden_states, g1, g2)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_value,)

        return outputs + ((g1, g2) if hasattr(self, "router") else None,)


class MonetPreTrainedModel(PreTrainedModel):
    config_class = MonetConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["MonetDecoderLayer"]
    _skip_keys_device_placement = ["past_key_values"]
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True
    _supports_quantized_cache = True
    _supports_static_cache = True

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


class MonetModel(MonetPreTrainedModel):
    def __init__(self, config: MonetConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)  # noqa
        self.layers = nn.ModuleList([MonetDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])  # noqa
        self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: torch.Tensor | None = None,
        position_ids: torch.LongTensor | None = None,
        past_key_values: Cache | list[torch.FloatTensor] | None = None,
        inputs_embeds: torch.FloatTensor | None = None,
        use_cache: bool | None = None,
        output_attentions: bool | None = None,
        output_hidden_states: bool | None = None,
        output_router_probs: bool | None = None,
        return_dict: bool | None = None,
        cache_position: torch.LongTensor | None = None,
    ) -> tuple[torch.Tensor, ...] | MonetModelOutputWithPast:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions  # noqa
        output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states  # noqa
        output_router_probs = output_router_probs if output_router_probs is not None else self.config.output_router_probs  # noqa
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict  # noqa

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one")  # noqa

        if self.gradient_checkpointing and self.training and use_cache:
            logger.warning_once("`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`.")  # noqa
            use_cache = False

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        return_legacy_cache = False
        if use_cache and not isinstance(past_key_values, Cache):  # kept for BC (non `Cache` `past_key_values` inputs)  # noqa
            return_legacy_cache = True
            past_key_values = DynamicCache.from_legacy_cache(past_key_values)
            logger.warning_once(
                "We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "  # noqa
                "Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"  # noqa
            )

        if cache_position is None:
            past_seen_tokens = (
                past_key_values.get_seq_length() if past_key_values is not None else 0
            )
            cache_position = torch.arange(past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device)  # noqa
        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)
        causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions)  # noqa

        # embed positions
        hidden_states = inputs_embeds

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        all_router_probs = () if output_router_probs else None
        previous_router_probs, next_decoder_cache = None, None

        for decoder_layer in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    causal_mask,
                    position_ids,
                    past_key_values,
                    previous_router_probs,
                    output_attentions,
                    use_cache,
                    cache_position,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=causal_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    previous_router_probs=previous_router_probs,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                    cache_position=cache_position,
                )

            hidden_states = layer_outputs[0]
            if use_cache:
                next_decoder_cache = layer_outputs[2 if output_attentions else 1]
            if output_attentions:
                all_self_attns += (layer_outputs[1],)
            if output_router_probs:
                all_router_probs += (layer_outputs[-1],)
            previous_router_probs = (
                layer_outputs[-1]
                if layer_outputs[-1] is not None
                else previous_router_probs
            )

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = next_decoder_cache if use_cache else None
        if return_legacy_cache:
            next_cache = next_cache.to_legacy_cache()

        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_probs] if v is not None)  # noqa
        return MonetModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
            router_probs=all_router_probs,
        )

    def _update_causal_mask(
        self,
        attention_mask: torch.Tensor,
        input_tensor: torch.Tensor,
        cache_position: torch.Tensor,
        past_key_values: Cache,
        output_attentions: bool,
    ):
        if self.config._attn_implementation == "flash_attention_2":
            if attention_mask is not None and 0.0 in attention_mask:
                return attention_mask
            return None

        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0  # noqa
        using_static_cache = isinstance(past_key_values, StaticCache)

        if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:  # noqa
            if AttentionMaskConverter._ignore_causal_mask_sdpa(
                attention_mask,
                inputs_embeds=input_tensor,
                past_key_values_length=past_seen_tokens,
                is_training=self.training,
            ):
                return None

        dtype, device = input_tensor.dtype, input_tensor.device
        min_dtype = torch.finfo(dtype).min
        sequence_length = input_tensor.shape[1]
        if using_static_cache:
            target_length = past_key_values.get_max_length()
        else:
            target_length = (
                attention_mask.shape[-1]
                if isinstance(attention_mask, torch.Tensor)
                else past_seen_tokens + sequence_length + 1
            )

        if attention_mask is not None and attention_mask.dim() == 4:
            if attention_mask.max() != 0:
                raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")  # noqa
            causal_mask = attention_mask
        else:
            causal_mask = torch.full(
                (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device  # noqa
            )
            if sequence_length != 1:
                causal_mask = torch.triu(causal_mask, diagonal=1)
            causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)  # noqa
            causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)  # noqa
            if attention_mask is not None:
                causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit  # noqa
                mask_length = attention_mask.shape[-1]
                padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]  # noqa
                padding_mask = padding_mask == 0
                causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(padding_mask, min_dtype)  # noqa
        if (
            self.config._attn_implementation == "sdpa"
            and attention_mask is not None
            and attention_mask.device.type == "cuda"
            and not output_attentions
        ):
            causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)  # noqa

        return causal_mask


class MonetForCausalLM(MonetPreTrainedModel):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.model = MonetModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: torch.Tensor | None = None,
        position_ids: torch.LongTensor | None = None,
        past_key_values: Cache | list[torch.FloatTensor] | None = None,
        inputs_embeds: torch.FloatTensor | None = None,
        labels: torch.LongTensor | None = None,
        use_cache: bool | None = None,
        output_attentions: bool | None = None,
        output_hidden_states: bool | None = None,
        output_router_probs: bool | None = None,
        return_dict: bool | None = None,
        cache_position: torch.LongTensor | None = None,
    ) -> tuple[torch.Tensor, ...] | MonetCausalLMOutputWithPast:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions  # noqa
        output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states  # noqa
        output_router_probs = output_router_probs if output_router_probs is not None else self.config.output_router_probs  # noqa
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict  # noqa

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            output_router_probs=output_router_probs,
            return_dict=return_dict,
            cache_position=cache_position,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)
        logits = logits.float()

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return MonetCausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
            router_probs=outputs.router_probs,
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        cache_position=None,
        use_cache=True,
        **kwargs,
    ):
        past_length = 0
        if past_key_values is not None:
            past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()  # noqa
            max_cache_length = (
                torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
                if past_key_values.get_max_length() is not None
                else None
            )
            cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)  # noqa

            # Keep only the unprocessed tokens:
            if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:  # noqa
                input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
            # input_ids based on the past_length.
            elif past_length < input_ids.shape[1]:
                input_ids = input_ids[:, past_length:]

            if (
                max_cache_length is not None
                and attention_mask is not None
                and cache_length + input_ids.shape[1] > max_cache_length
            ):
                attention_mask = attention_mask[:, -max_cache_length:]

        position_ids = kwargs.get("position_ids", None)
        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -input_ids.shape[1] :]

        if inputs_embeds is not None and past_length == 0:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids.contiguous()}

        input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]  # noqa
        if cache_position is None:
            cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)  # noqa
        elif use_cache:
            cache_position = cache_position[-input_length:]

        model_inputs.update(
            {
                "position_ids": position_ids,
                "cache_position": cache_position,
                "past_key_values": past_key_values,
                "use_cache": use_cache,
                "attention_mask": attention_mask,
            }
        )
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:
            reordered_past += (
                tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),  # noqa
            )
        return reordered_past