MonsterMMORPG
commited on
Commit
·
4ee6084
1
Parent(s):
6fad6bb
Upload rerender.py
Browse files- rerender.py +470 -0
rerender.py
ADDED
@@ -0,0 +1,470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
|
5 |
+
import cv2
|
6 |
+
import einops
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import torchvision.transforms as T
|
11 |
+
from blendmodes.blend import BlendType, blendLayers
|
12 |
+
from PIL import Image
|
13 |
+
from pytorch_lightning import seed_everything
|
14 |
+
from safetensors.torch import load_file
|
15 |
+
from skimage import exposure
|
16 |
+
|
17 |
+
import src.import_util # noqa: F401
|
18 |
+
from deps.ControlNet.annotator.canny import CannyDetector
|
19 |
+
from deps.ControlNet.annotator.hed import HEDdetector
|
20 |
+
from deps.ControlNet.annotator.util import HWC3
|
21 |
+
from deps.ControlNet.cldm.cldm import ControlLDM
|
22 |
+
from deps.ControlNet.cldm.model import create_model, load_state_dict
|
23 |
+
from deps.gmflow.gmflow.gmflow import GMFlow
|
24 |
+
from flow.flow_utils import get_warped_and_mask
|
25 |
+
from src.config import RerenderConfig
|
26 |
+
from src.controller import AttentionControl
|
27 |
+
from src.ddim_v_hacked import DDIMVSampler
|
28 |
+
from src.freeu import freeu_forward
|
29 |
+
from src.img_util import find_flat_region, numpy2tensor
|
30 |
+
from src.video_util import frame_to_video, get_fps, prepare_frames
|
31 |
+
|
32 |
+
blur = T.GaussianBlur(kernel_size=(9, 9), sigma=(18, 18))
|
33 |
+
totensor = T.PILToTensor()
|
34 |
+
|
35 |
+
|
36 |
+
def setup_color_correction(image):
|
37 |
+
correction_target = cv2.cvtColor(np.asarray(image.copy()),
|
38 |
+
cv2.COLOR_RGB2LAB)
|
39 |
+
return correction_target
|
40 |
+
|
41 |
+
|
42 |
+
def apply_color_correction(correction, original_image):
|
43 |
+
image = Image.fromarray(
|
44 |
+
cv2.cvtColor(
|
45 |
+
exposure.match_histograms(cv2.cvtColor(np.asarray(original_image),
|
46 |
+
cv2.COLOR_RGB2LAB),
|
47 |
+
correction,
|
48 |
+
channel_axis=2),
|
49 |
+
cv2.COLOR_LAB2RGB).astype('uint8'))
|
50 |
+
|
51 |
+
image = blendLayers(image, original_image, BlendType.LUMINOSITY)
|
52 |
+
|
53 |
+
return image
|
54 |
+
|
55 |
+
|
56 |
+
def rerender(cfg: RerenderConfig, first_img_only: bool, key_video_path: str):
|
57 |
+
|
58 |
+
# Preprocess input
|
59 |
+
prepare_frames(cfg.input_path, cfg.input_dir, cfg.image_resolution,
|
60 |
+
cfg.crop)
|
61 |
+
|
62 |
+
# Load models
|
63 |
+
if cfg.control_type == 'HED':
|
64 |
+
detector = HEDdetector()
|
65 |
+
elif cfg.control_type == 'canny':
|
66 |
+
canny_detector = CannyDetector()
|
67 |
+
low_threshold = cfg.canny_low
|
68 |
+
high_threshold = cfg.canny_high
|
69 |
+
|
70 |
+
def apply_canny(x):
|
71 |
+
return canny_detector(x, low_threshold, high_threshold)
|
72 |
+
|
73 |
+
detector = apply_canny
|
74 |
+
|
75 |
+
model: ControlLDM = create_model(
|
76 |
+
'./deps/ControlNet/models/cldm_v15.yaml').cpu()
|
77 |
+
if cfg.control_type == 'HED':
|
78 |
+
model.load_state_dict(
|
79 |
+
load_state_dict('./models/control_sd15_hed.pth', location='cuda'))
|
80 |
+
elif cfg.control_type == 'canny':
|
81 |
+
model.load_state_dict(
|
82 |
+
load_state_dict('./models/control_sd15_canny.pth',
|
83 |
+
location='cuda'))
|
84 |
+
model = model.cuda()
|
85 |
+
model.control_scales = [cfg.control_strength] * 13
|
86 |
+
|
87 |
+
if cfg.sd_model is not None:
|
88 |
+
model_ext = os.path.splitext(cfg.sd_model)[1]
|
89 |
+
if model_ext == '.safetensors':
|
90 |
+
model.load_state_dict(load_file(cfg.sd_model), strict=False)
|
91 |
+
elif model_ext == '.ckpt' or model_ext == '.pth':
|
92 |
+
model.load_state_dict(torch.load(cfg.sd_model)['state_dict'],
|
93 |
+
strict=False)
|
94 |
+
|
95 |
+
try:
|
96 |
+
model.first_stage_model.load_state_dict(torch.load(
|
97 |
+
'./models/vae-ft-mse-840000-ema-pruned.ckpt')['state_dict'],
|
98 |
+
strict=False)
|
99 |
+
except Exception:
|
100 |
+
print('Warning: We suggest you download the fine-tuned VAE',
|
101 |
+
'otherwise the generation quality will be degraded')
|
102 |
+
|
103 |
+
model.model.diffusion_model.forward = \
|
104 |
+
freeu_forward(model.model.diffusion_model, *cfg.freeu_args)
|
105 |
+
ddim_v_sampler = DDIMVSampler(model)
|
106 |
+
|
107 |
+
flow_model = GMFlow(
|
108 |
+
feature_channels=128,
|
109 |
+
num_scales=1,
|
110 |
+
upsample_factor=8,
|
111 |
+
num_head=1,
|
112 |
+
attention_type='swin',
|
113 |
+
ffn_dim_expansion=4,
|
114 |
+
num_transformer_layers=6,
|
115 |
+
).to('cuda')
|
116 |
+
|
117 |
+
checkpoint = torch.load('models/gmflow_sintel-0c07dcb3.pth',
|
118 |
+
map_location=lambda storage, loc: storage)
|
119 |
+
weights = checkpoint['model'] if 'model' in checkpoint else checkpoint
|
120 |
+
flow_model.load_state_dict(weights, strict=False)
|
121 |
+
flow_model.eval()
|
122 |
+
|
123 |
+
num_samples = 1
|
124 |
+
ddim_steps = 20
|
125 |
+
scale = 7.5
|
126 |
+
|
127 |
+
seed = cfg.seed
|
128 |
+
if seed == -1:
|
129 |
+
seed = random.randint(0, 65535)
|
130 |
+
eta = 0.0
|
131 |
+
|
132 |
+
prompt = cfg.prompt
|
133 |
+
a_prompt = cfg.a_prompt
|
134 |
+
n_prompt = cfg.n_prompt
|
135 |
+
prompt = prompt + ', ' + a_prompt
|
136 |
+
|
137 |
+
style_update_freq = cfg.style_update_freq
|
138 |
+
pixelfusion = True
|
139 |
+
color_preserve = cfg.color_preserve
|
140 |
+
|
141 |
+
x0_strength = 1 - cfg.x0_strength
|
142 |
+
mask_period = cfg.mask_period
|
143 |
+
firstx0 = True
|
144 |
+
controller = AttentionControl(cfg.inner_strength, cfg.mask_period,
|
145 |
+
cfg.cross_period, cfg.ada_period,
|
146 |
+
cfg.warp_period, cfg.loose_cfattn)
|
147 |
+
|
148 |
+
imgs = sorted(os.listdir(cfg.input_dir))
|
149 |
+
imgs = [os.path.join(cfg.input_dir, img) for img in imgs]
|
150 |
+
if cfg.frame_count >= 0:
|
151 |
+
imgs = imgs[:cfg.frame_count]
|
152 |
+
|
153 |
+
with torch.no_grad():
|
154 |
+
frame = cv2.imread(imgs[0])
|
155 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
156 |
+
img = HWC3(frame)
|
157 |
+
H, W, C = img.shape
|
158 |
+
|
159 |
+
img_ = numpy2tensor(img)
|
160 |
+
# if color_preserve:
|
161 |
+
# img_ = numpy2tensor(img)
|
162 |
+
# else:
|
163 |
+
# img_ = apply_color_correction(color_corrections,
|
164 |
+
# Image.fromarray(img))
|
165 |
+
# img_ = totensor(img_).unsqueeze(0)[:, :3] / 127.5 - 1
|
166 |
+
encoder_posterior = model.encode_first_stage(img_.cuda())
|
167 |
+
x0 = model.get_first_stage_encoding(encoder_posterior).detach()
|
168 |
+
|
169 |
+
detected_map = detector(img)
|
170 |
+
detected_map = HWC3(detected_map)
|
171 |
+
# For visualization
|
172 |
+
detected_img = 255 - detected_map
|
173 |
+
|
174 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
175 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
176 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
177 |
+
cond = {
|
178 |
+
'c_concat': [control],
|
179 |
+
'c_crossattn':
|
180 |
+
[model.get_learned_conditioning([prompt] * num_samples)]
|
181 |
+
}
|
182 |
+
un_cond = {
|
183 |
+
'c_concat': [control],
|
184 |
+
'c_crossattn':
|
185 |
+
[model.get_learned_conditioning([n_prompt] * num_samples)]
|
186 |
+
}
|
187 |
+
shape = (4, H // 8, W // 8)
|
188 |
+
|
189 |
+
controller.set_task('initfirst')
|
190 |
+
seed_everything(seed)
|
191 |
+
samples, _ = ddim_v_sampler.sample(ddim_steps,
|
192 |
+
num_samples,
|
193 |
+
shape,
|
194 |
+
cond,
|
195 |
+
verbose=False,
|
196 |
+
eta=eta,
|
197 |
+
unconditional_guidance_scale=scale,
|
198 |
+
unconditional_conditioning=un_cond,
|
199 |
+
controller=controller,
|
200 |
+
x0=x0,
|
201 |
+
strength=x0_strength)
|
202 |
+
x_samples = model.decode_first_stage(samples)
|
203 |
+
pre_result = x_samples
|
204 |
+
pre_img = img
|
205 |
+
first_result = pre_result
|
206 |
+
first_img = pre_img
|
207 |
+
|
208 |
+
x_samples = (
|
209 |
+
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
210 |
+
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
211 |
+
color_corrections = setup_color_correction(Image.fromarray(x_samples[0]))
|
212 |
+
Image.fromarray(x_samples[0]).save(os.path.join(cfg.first_dir,
|
213 |
+
'first.jpg'))
|
214 |
+
cv2.imwrite(os.path.join(cfg.first_dir, 'first_edge.jpg'), detected_img)
|
215 |
+
|
216 |
+
if first_img_only:
|
217 |
+
exit(0)
|
218 |
+
|
219 |
+
for i in range(0, min(len(imgs), cfg.frame_count) - 1, cfg.interval):
|
220 |
+
cid = i + 1
|
221 |
+
print(cid)
|
222 |
+
if cid <= (len(imgs) - 1):
|
223 |
+
frame = cv2.imread(imgs[cid])
|
224 |
+
else:
|
225 |
+
frame = cv2.imread(imgs[len(imgs) - 1])
|
226 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
227 |
+
img = HWC3(frame)
|
228 |
+
|
229 |
+
if color_preserve:
|
230 |
+
img_ = numpy2tensor(img)
|
231 |
+
else:
|
232 |
+
img_ = apply_color_correction(color_corrections,
|
233 |
+
Image.fromarray(img))
|
234 |
+
img_ = totensor(img_).unsqueeze(0)[:, :3] / 127.5 - 1
|
235 |
+
encoder_posterior = model.encode_first_stage(img_.cuda())
|
236 |
+
x0 = model.get_first_stage_encoding(encoder_posterior).detach()
|
237 |
+
|
238 |
+
detected_map = detector(img)
|
239 |
+
detected_map = HWC3(detected_map)
|
240 |
+
|
241 |
+
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
242 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
243 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
244 |
+
cond['c_concat'] = [control]
|
245 |
+
un_cond['c_concat'] = [control]
|
246 |
+
|
247 |
+
image1 = torch.from_numpy(pre_img).permute(2, 0, 1).float()
|
248 |
+
image2 = torch.from_numpy(img).permute(2, 0, 1).float()
|
249 |
+
warped_pre, bwd_occ_pre, bwd_flow_pre = get_warped_and_mask(
|
250 |
+
flow_model, image1, image2, pre_result, False)
|
251 |
+
blend_mask_pre = blur(
|
252 |
+
F.max_pool2d(bwd_occ_pre, kernel_size=9, stride=1, padding=4))
|
253 |
+
blend_mask_pre = torch.clamp(blend_mask_pre + bwd_occ_pre, 0, 1)
|
254 |
+
|
255 |
+
image1 = torch.from_numpy(first_img).permute(2, 0, 1).float()
|
256 |
+
warped_0, bwd_occ_0, bwd_flow_0 = get_warped_and_mask(
|
257 |
+
flow_model, image1, image2, first_result, False)
|
258 |
+
blend_mask_0 = blur(
|
259 |
+
F.max_pool2d(bwd_occ_0, kernel_size=9, stride=1, padding=4))
|
260 |
+
blend_mask_0 = torch.clamp(blend_mask_0 + bwd_occ_0, 0, 1)
|
261 |
+
|
262 |
+
if firstx0:
|
263 |
+
mask = 1 - F.max_pool2d(blend_mask_0, kernel_size=8)
|
264 |
+
controller.set_warp(
|
265 |
+
F.interpolate(bwd_flow_0 / 8.0,
|
266 |
+
scale_factor=1. / 8,
|
267 |
+
mode='bilinear'), mask)
|
268 |
+
else:
|
269 |
+
mask = 1 - F.max_pool2d(blend_mask_pre, kernel_size=8)
|
270 |
+
controller.set_warp(
|
271 |
+
F.interpolate(bwd_flow_pre / 8.0,
|
272 |
+
scale_factor=1. / 8,
|
273 |
+
mode='bilinear'), mask)
|
274 |
+
|
275 |
+
controller.set_task('keepx0, keepstyle')
|
276 |
+
seed_everything(seed)
|
277 |
+
samples, intermediates = ddim_v_sampler.sample(
|
278 |
+
ddim_steps,
|
279 |
+
num_samples,
|
280 |
+
shape,
|
281 |
+
cond,
|
282 |
+
verbose=False,
|
283 |
+
eta=eta,
|
284 |
+
unconditional_guidance_scale=scale,
|
285 |
+
unconditional_conditioning=un_cond,
|
286 |
+
controller=controller,
|
287 |
+
x0=x0,
|
288 |
+
strength=x0_strength)
|
289 |
+
direct_result = model.decode_first_stage(samples)
|
290 |
+
|
291 |
+
if not pixelfusion:
|
292 |
+
pre_result = direct_result
|
293 |
+
pre_img = img
|
294 |
+
viz = (
|
295 |
+
einops.rearrange(direct_result, 'b c h w -> b h w c') * 127.5 +
|
296 |
+
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
297 |
+
|
298 |
+
else:
|
299 |
+
|
300 |
+
blend_results = (1 - blend_mask_pre
|
301 |
+
) * warped_pre + blend_mask_pre * direct_result
|
302 |
+
blend_results = (
|
303 |
+
1 - blend_mask_0) * warped_0 + blend_mask_0 * blend_results
|
304 |
+
|
305 |
+
bwd_occ = 1 - torch.clamp(1 - bwd_occ_pre + 1 - bwd_occ_0, 0, 1)
|
306 |
+
blend_mask = blur(
|
307 |
+
F.max_pool2d(bwd_occ, kernel_size=9, stride=1, padding=4))
|
308 |
+
blend_mask = 1 - torch.clamp(blend_mask + bwd_occ, 0, 1)
|
309 |
+
|
310 |
+
encoder_posterior = model.encode_first_stage(blend_results)
|
311 |
+
xtrg = model.get_first_stage_encoding(
|
312 |
+
encoder_posterior).detach() # * mask
|
313 |
+
blend_results_rec = model.decode_first_stage(xtrg)
|
314 |
+
encoder_posterior = model.encode_first_stage(blend_results_rec)
|
315 |
+
xtrg_rec = model.get_first_stage_encoding(
|
316 |
+
encoder_posterior).detach()
|
317 |
+
xtrg_ = (xtrg + 1 * (xtrg - xtrg_rec)) # * mask
|
318 |
+
blend_results_rec_new = model.decode_first_stage(xtrg_)
|
319 |
+
tmp = (abs(blend_results_rec_new - blend_results).mean(
|
320 |
+
dim=1, keepdims=True) > 0.25).float()
|
321 |
+
mask_x = F.max_pool2d((F.interpolate(
|
322 |
+
tmp, scale_factor=1 / 8., mode='bilinear') > 0).float(),
|
323 |
+
kernel_size=3,
|
324 |
+
stride=1,
|
325 |
+
padding=1)
|
326 |
+
|
327 |
+
mask = (1 - F.max_pool2d(1 - blend_mask, kernel_size=8)
|
328 |
+
) # * (1-mask_x)
|
329 |
+
|
330 |
+
if cfg.smooth_boundary:
|
331 |
+
noise_rescale = find_flat_region(mask)
|
332 |
+
else:
|
333 |
+
noise_rescale = torch.ones_like(mask)
|
334 |
+
masks = []
|
335 |
+
for i in range(ddim_steps):
|
336 |
+
if i <= ddim_steps * mask_period[
|
337 |
+
0] or i >= ddim_steps * mask_period[1]:
|
338 |
+
masks += [None]
|
339 |
+
else:
|
340 |
+
masks += [mask * cfg.mask_strength]
|
341 |
+
|
342 |
+
# mask 3
|
343 |
+
# xtrg = ((1-mask_x) *
|
344 |
+
# (xtrg + xtrg - xtrg_rec) + mask_x * samples) * mask
|
345 |
+
# mask 2
|
346 |
+
# xtrg = (xtrg + 1 * (xtrg - xtrg_rec)) * mask
|
347 |
+
xtrg = (xtrg + (1 - mask_x) * (xtrg - xtrg_rec)) * mask # mask 1
|
348 |
+
|
349 |
+
tasks = 'keepstyle, keepx0'
|
350 |
+
if not firstx0:
|
351 |
+
tasks += ', updatex0'
|
352 |
+
if i % style_update_freq == 0:
|
353 |
+
tasks += ', updatestyle'
|
354 |
+
controller.set_task(tasks, 1.0)
|
355 |
+
|
356 |
+
seed_everything(seed)
|
357 |
+
samples, _ = ddim_v_sampler.sample(
|
358 |
+
ddim_steps,
|
359 |
+
num_samples,
|
360 |
+
shape,
|
361 |
+
cond,
|
362 |
+
verbose=False,
|
363 |
+
eta=eta,
|
364 |
+
unconditional_guidance_scale=scale,
|
365 |
+
unconditional_conditioning=un_cond,
|
366 |
+
controller=controller,
|
367 |
+
x0=x0,
|
368 |
+
strength=x0_strength,
|
369 |
+
xtrg=xtrg,
|
370 |
+
mask=masks,
|
371 |
+
noise_rescale=noise_rescale)
|
372 |
+
x_samples = model.decode_first_stage(samples)
|
373 |
+
pre_result = x_samples
|
374 |
+
pre_img = img
|
375 |
+
|
376 |
+
viz = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
|
377 |
+
127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
378 |
+
|
379 |
+
Image.fromarray(viz[0]).save(
|
380 |
+
os.path.join(cfg.key_dir, f'{cid:04d}.png'))
|
381 |
+
if key_video_path is not None:
|
382 |
+
fps = get_fps(cfg.input_path)
|
383 |
+
fps //= cfg.interval
|
384 |
+
frame_to_video(key_video_path, cfg.key_dir, fps, False)
|
385 |
+
|
386 |
+
|
387 |
+
def postprocess(cfg: RerenderConfig, ne: bool, max_process: int, tmp: bool,
|
388 |
+
ps: bool):
|
389 |
+
video_base_dir = cfg.work_dir
|
390 |
+
o_video = cfg.output_path
|
391 |
+
fps = get_fps(cfg.input_path)
|
392 |
+
|
393 |
+
end_frame = cfg.frame_count - 1
|
394 |
+
interval = cfg.interval
|
395 |
+
key_dir = os.path.split(cfg.key_dir)[-1]
|
396 |
+
use_e = '-ne' if ne else ''
|
397 |
+
use_tmp = '-tmp' if tmp else ''
|
398 |
+
use_ps = '-ps' if ps else ''
|
399 |
+
o_video_cmd = f'--output {o_video}'
|
400 |
+
|
401 |
+
cmd = (
|
402 |
+
f'python video_blend.py {video_base_dir} --beg 1 --end {end_frame} '
|
403 |
+
f'--itv {interval} --key {key_dir} {use_e} {o_video_cmd} --fps {fps} '
|
404 |
+
f'--n_proc {max_process} {use_tmp} {use_ps}')
|
405 |
+
print(cmd)
|
406 |
+
os.system(cmd)
|
407 |
+
|
408 |
+
|
409 |
+
if __name__ == '__main__':
|
410 |
+
parser = argparse.ArgumentParser()
|
411 |
+
parser.add_argument('--cfg', type=str, default=None)
|
412 |
+
parser.add_argument('--input',
|
413 |
+
type=str,
|
414 |
+
default=None,
|
415 |
+
help='The input path to video.')
|
416 |
+
parser.add_argument('--output', type=str, default=None)
|
417 |
+
parser.add_argument('--prompt', type=str, default=None)
|
418 |
+
parser.add_argument('--key_video_path', type=str, default=None)
|
419 |
+
parser.add_argument('-one',
|
420 |
+
action='store_true',
|
421 |
+
help='Run the first frame with ControlNet only')
|
422 |
+
parser.add_argument('-nr',
|
423 |
+
action='store_true',
|
424 |
+
help='Do not run rerender and do postprocessing only')
|
425 |
+
parser.add_argument('-nb',
|
426 |
+
action='store_true',
|
427 |
+
help='Do not run postprocessing and run rerender only')
|
428 |
+
parser.add_argument(
|
429 |
+
'-ne',
|
430 |
+
action='store_true',
|
431 |
+
help='Do not run ebsynth (use previous ebsynth temporary output)')
|
432 |
+
parser.add_argument('-nps',
|
433 |
+
action='store_true',
|
434 |
+
help='Do not run poisson gradient blending')
|
435 |
+
parser.add_argument('--n_proc',
|
436 |
+
type=int,
|
437 |
+
default=4,
|
438 |
+
help='The max process count')
|
439 |
+
parser.add_argument('--tmp',
|
440 |
+
action='store_true',
|
441 |
+
help='Keep ebsynth temporary output')
|
442 |
+
|
443 |
+
args = parser.parse_args()
|
444 |
+
|
445 |
+
cfg = RerenderConfig()
|
446 |
+
if args.cfg is not None:
|
447 |
+
cfg.create_from_path(args.cfg)
|
448 |
+
if args.input is not None:
|
449 |
+
print('Config has been loaded. --input is ignored.')
|
450 |
+
if args.output is not None:
|
451 |
+
print('Config has been loaded. --output is ignored.')
|
452 |
+
if args.prompt is not None:
|
453 |
+
print('Config has been loaded. --prompt is ignored.')
|
454 |
+
else:
|
455 |
+
if args.input is None:
|
456 |
+
print('Config not found. --input is required.')
|
457 |
+
exit(0)
|
458 |
+
if args.output is None:
|
459 |
+
print('Config not found. --output is required.')
|
460 |
+
exit(0)
|
461 |
+
if args.prompt is None:
|
462 |
+
print('Config not found. --prompt is required.')
|
463 |
+
exit(0)
|
464 |
+
cfg.create_from_parameters(args.input, args.output, args.prompt)
|
465 |
+
|
466 |
+
if not args.nr:
|
467 |
+
rerender(cfg, args.one, args.key_video_path)
|
468 |
+
torch.cuda.empty_cache()
|
469 |
+
if not args.nb:
|
470 |
+
postprocess(cfg, args.ne, args.n_proc, args.tmp, not args.nps)
|