File size: 2,156 Bytes
9a7774d 4c285a8 9a7774d 99e3563 9a7774d 4c285a8 9a7774d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: apache-2.0
base_model: distilbert/distilbert-base-multilingual-cased
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-multilingual-cased_regression_finetuned_dcard
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-multilingual-cased_regression_finetuned_dcard
This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0004
- Mse: 0.0004
- Mae: 0.0153
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mse | Mae |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| No log | 1.0 | 5 | 0.1120 | 0.1120 | 0.3246 |
| No log | 2.0 | 10 | 0.0117 | 0.0117 | 0.0966 |
| No log | 3.0 | 15 | 0.0048 | 0.0048 | 0.0602 |
| No log | 4.0 | 20 | 0.0029 | 0.0029 | 0.0492 |
| No log | 5.0 | 25 | 0.0016 | 0.0016 | 0.0328 |
| No log | 6.0 | 30 | 0.0005 | 0.0005 | 0.0173 |
| No log | 7.0 | 35 | 0.0004 | 0.0004 | 0.0177 |
| No log | 8.0 | 40 | 0.0003 | 0.0003 | 0.0157 |
| No log | 9.0 | 45 | 0.0004 | 0.0004 | 0.0154 |
| 0.0654 | 10.0 | 50 | 0.0004 | 0.0004 | 0.0153 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
|