File size: 2,486 Bytes
9a7774d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec06062
 
 
 
 
 
9a7774d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99e3563
9a7774d
 
 
 
 
7645ac5
9a7774d
 
 
 
ec06062
 
 
 
 
 
 
 
 
 
 
9a7774d
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
base_model: distilbert/distilbert-base-multilingual-cased
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-multilingual-cased_regression_finetuned_dcard
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-multilingual-cased_regression_finetuned_dcard

This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6568
- Mse: 0.6568
- Mae: 0.5036
- Rmse: 0.8104
- Mape: inf
- R Squared: 0.5925

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 891
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Mse    | Mae    | Rmse   | Mape | R Squared |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:----:|:---------:|
| 1.0667        | 1.0   | 8917  | 0.9488          | 0.9488 | 0.6910 | 0.9741 | inf  | 0.4113    |
| 0.8502        | 2.0   | 17834 | 0.7789          | 0.7789 | 0.6072 | 0.8825 | inf  | 0.5167    |
| 0.6093        | 3.0   | 26751 | 0.7659          | 0.7659 | 0.5919 | 0.8751 | inf  | 0.5248    |
| 0.5891        | 4.0   | 35668 | 0.7029          | 0.7029 | 0.5537 | 0.8384 | inf  | 0.5639    |
| 0.5542        | 5.0   | 44585 | 0.6521          | 0.6521 | 0.5156 | 0.8075 | inf  | 0.5954    |
| 0.5475        | 6.0   | 53502 | 0.6414          | 0.6414 | 0.5087 | 0.8009 | inf  | 0.6020    |
| 0.4619        | 7.0   | 62419 | 0.6389          | 0.6389 | 0.5015 | 0.7993 | inf  | 0.6036    |
| 0.4368        | 8.0   | 71336 | 0.6471          | 0.6471 | 0.5014 | 0.8044 | inf  | 0.5985    |
| 0.4106        | 9.0   | 80253 | 0.6568          | 0.6568 | 0.5036 | 0.8104 | inf  | 0.5925    |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2