File size: 1,718 Bytes
7fcfd9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11e9469
 
 
7fcfd9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c724a48
7fcfd9c
 
 
 
 
 
 
 
 
 
c724a48
 
 
 
 
7fcfd9c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
---
license: apache-2.0
base_model: distilbert/distilbert-base-multilingual-cased
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-multilingual-cased_regression_finetuned_news_all
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-multilingual-cased_regression_finetuned_news_all

This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0055
- Mse: 0.0055
- Mae: 0.0471

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mse    | Mae    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| No log        | 1.0   | 5    | 0.4268          | 0.4268 | 0.6531 |
| No log        | 2.0   | 10   | 0.1314          | 0.1314 | 0.3619 |
| No log        | 3.0   | 15   | 0.0055          | 0.0055 | 0.0471 |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2