File size: 1,955 Bytes
7fcfd9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93f109a
 
7694be7
7fcfd9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93f109a
7fcfd9c
 
 
 
 
 
 
 
 
c724a48
 
93f109a
 
 
 
 
 
 
7fcfd9c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: apache-2.0
base_model: distilbert/distilbert-base-multilingual-cased
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-multilingual-cased_regression_finetuned_news_all
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-multilingual-cased_regression_finetuned_news_all

This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0001
- Mse: 0.0001
- Mae: 0.0066

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Mse    | Mae    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| No log        | 1.0   | 5    | 0.0270          | 0.0270 | 0.1628 |
| No log        | 2.0   | 10   | 0.0041          | 0.0041 | 0.0611 |
| No log        | 3.0   | 15   | 0.0001          | 0.0001 | 0.0090 |
| No log        | 4.0   | 20   | 0.0001          | 0.0001 | 0.0072 |
| No log        | 5.0   | 25   | 0.0001          | 0.0001 | 0.0066 |
| No log        | 6.0   | 30   | 0.0001          | 0.0001 | 0.0105 |
| No log        | 7.0   | 35   | 0.0001          | 0.0001 | 0.0074 |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2