File size: 2,046 Bytes
7fcfd9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: apache-2.0
base_model: distilbert/distilbert-base-multilingual-cased
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-multilingual-cased_regression_finetuned_news_all
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-multilingual-cased_regression_finetuned_news_all
This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7168
- Mse: 1.7168
- Mae: 0.9618
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mse | Mae |
|:-------------:|:-----:|:------:|:---------------:|:------:|:------:|
| 1.815 | 1.0 | 21755 | 1.7168 | 1.7168 | 0.9622 |
| 1.6414 | 2.0 | 43510 | 1.7167 | 1.7167 | 0.9620 |
| 1.6485 | 3.0 | 65265 | 1.7171 | 1.7171 | 0.9614 |
| 1.7803 | 4.0 | 87020 | 1.7168 | 1.7168 | 0.9619 |
| 1.6427 | 5.0 | 108775 | 1.7173 | 1.7173 | 0.9613 |
| 1.6436 | 6.0 | 130530 | 1.7170 | 1.7170 | 0.9615 |
| 1.7037 | 7.0 | 152285 | 1.7168 | 1.7168 | 0.9618 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
|