File size: 2,306 Bytes
7fcfd9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
518a496
 
 
 
ebb4eea
518a496
7fcfd9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93f109a
7fcfd9c
 
 
 
 
ebb4eea
7fcfd9c
 
 
 
ebb4eea
 
 
 
 
 
 
 
 
7fcfd9c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
base_model: distilbert/distilbert-base-multilingual-cased
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-multilingual-cased_regression_finetuned_news_all
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-multilingual-cased_regression_finetuned_news_all

This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8565
- Mse: 0.8565
- Mae: 0.5566
- Rmse: 0.9255
- Mape: inf
- R Squared: 0.5011

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 2175
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Mse    | Mae    | Rmse   | Mape | R Squared |
|:-------------:|:-----:|:------:|:---------------:|:------:|:------:|:------:|:----:|:---------:|
| 0.9354        | 1.0   | 21755  | 0.9298          | 0.9298 | 0.5985 | 0.9643 | inf  | 0.4584    |
| 0.8432        | 2.0   | 43510  | 0.8988          | 0.8988 | 0.5756 | 0.9481 | inf  | 0.4764    |
| 0.8033        | 3.0   | 65265  | 0.8810          | 0.8810 | 0.5685 | 0.9386 | inf  | 0.4868    |
| 0.8119        | 4.0   | 87020  | 0.8778          | 0.8778 | 0.5623 | 0.9369 | inf  | 0.4887    |
| 0.7401        | 5.0   | 108775 | 0.8565          | 0.8565 | 0.5566 | 0.9255 | inf  | 0.5011    |
| 0.6964        | 6.0   | 130530 | 0.8877          | 0.8877 | 0.5587 | 0.9422 | inf  | 0.4829    |
| 0.6213        | 7.0   | 152285 | 0.8918          | 0.8918 | 0.5607 | 0.9444 | inf  | 0.4805    |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2