File size: 2,090 Bytes
c04290b 124ef99 43ac7c5 124ef99 c04290b e8f0a92 c04290b 124ef99 c04290b 124ef99 c04290b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: apache-2.0
base_model: distilbert/distilbert-base-multilingual-cased
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-multilingual-cased_regression_finetuned_ptt
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-multilingual-cased_regression_finetuned_ptt
This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8809
- Mse: 1.8809
- Mae: 1.0160
- Rmse: 1.3715
- Mape: inf
- R Squared: 0.0000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 206
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mse | Mae | Rmse | Mape | R Squared |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:----:|:---------:|
| 1.9028 | 1.0 | 2062 | 1.8809 | 1.8809 | 1.0147 | 1.3715 | inf | 0.0000 |
| 1.9381 | 2.0 | 4124 | 1.8831 | 1.8831 | 1.0177 | 1.3723 | inf | -0.0011 |
| 1.8691 | 3.0 | 6186 | 1.8809 | 1.8809 | 1.0160 | 1.3715 | inf | 0.0000 |
| 1.7741 | 4.0 | 8248 | 1.8809 | 1.8809 | 1.0153 | 1.3715 | inf | 0.0000 |
| 1.6734 | 5.0 | 10310 | 1.8809 | 1.8809 | 1.0143 | 1.3715 | inf | 0.0000 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.2
|