File size: 2,786 Bytes
2932b88
 
 
 
 
 
 
 
a7f7ce0
2932b88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7f7ce0
 
2932b88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7f7ce0
 
 
 
2932b88
a7f7ce0
2932b88
 
a7f7ce0
2932b88
a7f7ce0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2932b88
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---

tags:
  - image-to-text
  - image-captioning
license: apache-2.0
metrics:
  - rouge
datasets:
  - Mozilla/flickr30k-transformed-captions
widget:
  - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg
    example_title: Savanna
  - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg
    example_title: Football Match
  - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg
    example_title: Airport
base_model:
  - google/vit-base-patch16-224-in21k

model-index:
  - name: mozilla/distilvit
    results:
      - task:
          type: image-to-text
          name: Image To Text
        dataset:
          name: Mozilla/flickr30k-transformed-captions
          type: Mozilla/flickr30k-transformed-captions
        metrics:
          - name: ROUGE-1
            type: rouge
            value: 43.006
            verified: true
          - name: ROUGE-2
            type: rouge
            value: 16.9939
            verified: true
          - name: ROUGE-L
            type: rouge
            value: 38.8923
            verified: true
          - name: ROUGE-LSUM
            type: rouge
            value: 38.8877
            verified: true
          - name: loss
            type: loss
            value: 0.19939416646957397
          - name: gen_len
            type: gen_len
            value: 11.327256736227712
            verified: true
---


# distilvit

This model is a work in progress. Fine-tuned version of those base models:

- a VIT model for the image encoder: https://huggingface.co/google/vit-base-patch16-224-in21k
- a Distilled GPT-2 model for the text decoder: https://huggingface.co/distilbert/distilgpt2

This model was trained on:

- [Flickr30k debiased](https://huggingface.co/datasets/Mozilla/flickr30k-transformed-captions-gpt4o)
- [DocOrNot](https://huggingface.co/datasets/Mozilla/docornot)
- [Alt Text Validation](https://huggingface.co/datasets/Mozilla/alt-text-validation)
- A debiased version of COCO 2017: https://cocodataset.org

You can find the code used to create the model here: https://github.com/mozilla/distilvit


# training results

- eval/gen_len 14.99729

- eval/loss 0.17093

- eval/meteor 0.51479

- eval/rouge1 57.8066

- eval/rouge2 35.0888

- eval/rougeL 52.9138

- eval/rougeLsum 52.9101

- eval/runtime 760.2135

- eval/samples_per_second 11.18

- eval/steps_per_second 0.112

- train/epoch 8.0

- train/global_step 11752
- train/learning_rate 0.0

- train/loss 0.1034

- train/total_flos 1.518634875573869e+20
- train/train_loss 0.14875

- train/train_runtime 91405.9053
- train/train_samples_per_second 12.855

- train/train_steps_per_second 0.129