Update handler.py
Browse files- handler.py +48 -54
handler.py
CHANGED
@@ -1,72 +1,66 @@
|
|
1 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
2 |
-
from
|
3 |
-
from
|
|
|
|
|
4 |
import torch
|
|
|
|
|
5 |
|
6 |
-
template = """
|
7 |
<START>
|
8 |
-
{
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
<END>
|
|
|
11 |
{user_name}: {user_input}
|
12 |
-
|
13 |
|
14 |
-
#model_id="MrD05/kaido-6b"
|
15 |
class EndpointHandler():
|
16 |
|
17 |
def __init__(self, path=""):
|
18 |
-
tokenizer = AutoTokenizer.from_pretrained(path)
|
19 |
-
model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", load_in_8bit=True)
|
20 |
-
local_llm = HuggingFacePipeline(
|
21 |
-
pipeline = pipeline(
|
22 |
-
"text-generation",
|
23 |
-
model = model,
|
24 |
-
tokenizer = tokenizer,
|
25 |
-
max_length = 2048,
|
26 |
-
temperature = 0.5,
|
27 |
-
top_p = 0.9,
|
28 |
-
top_k = 0,
|
29 |
-
repetition_penalty = 1.1,
|
30 |
-
pad_token_id = 50256,
|
31 |
-
num_return_sequences = 1,
|
32 |
-
torch_dtype=torch.float32
|
33 |
-
|
34 |
-
)
|
35 |
-
)
|
36 |
-
prompt_template = PromptTemplate(
|
37 |
-
template = template,
|
38 |
-
input_variables = [
|
39 |
-
"user_input",
|
40 |
-
"user_name",
|
41 |
-
"char_name",
|
42 |
-
"char_persona",
|
43 |
-
"char_greeting",
|
44 |
-
"chat_history"
|
45 |
-
],
|
46 |
-
validate_template = True
|
47 |
-
)
|
48 |
-
self.llm_engine = LLMChain(
|
49 |
-
llm = local_llm,
|
50 |
-
prompt = prompt_template
|
51 |
-
)
|
52 |
|
53 |
def __call__(self, data):
|
54 |
inputs = data.pop("inputs", data)
|
55 |
try:
|
56 |
-
|
57 |
-
|
58 |
user_name = inputs["user_name"],
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
except Exception as e:
|
69 |
return {
|
70 |
-
"inputs": inputs,
|
71 |
"error": str(e)
|
72 |
}
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline,StoppingCriteria
|
2 |
+
from accelerate import init_empty_weights
|
3 |
+
from transformers_stream_generator import init_stream_support
|
4 |
+
# from langchain.llms import HuggingFacePipeline
|
5 |
+
# from langchain import PromptTemplate, LLMChain
|
6 |
import torch
|
7 |
+
import time
|
8 |
+
init_stream_support()
|
9 |
|
10 |
+
template = """Alice Gate's Persona: Alice Gate is a young, computer engineer-nerd with a knack for problem solving and a passion for technology.
|
11 |
<START>
|
12 |
+
{user_name}: So how did you get into computer engineering?
|
13 |
+
Alice Gate: I've always loved tinkering with technology since I was a kid.
|
14 |
+
{user_name}: That's really impressive!
|
15 |
+
Alice Gate: *She chuckles bashfully* Thanks!
|
16 |
+
{user_name}: So what do you do when you're not working on computers?
|
17 |
+
Alice Gate: I love exploring, going out with friends, watching movies, and playing video games.
|
18 |
+
{user_name}: What's your favorite type of computer hardware to work with?
|
19 |
+
Alice Gate: Motherboards, they're like puzzles and the backbone of any system.
|
20 |
+
{user_name}: That sounds great!
|
21 |
+
Alice Gate: Yeah, it's really fun. I'm lucky to be able to do this as a job.
|
22 |
<END>
|
23 |
+
Alice Gate: *Alice strides into the room with a smile, her eyes lighting up when she sees you. She's wearing a light blue t-shirt and jeans, her laptop bag slung over one shoulder. She takes a seat next to you, her enthusiasm palpable in the air* Hey! I'm so excited to finally meet you. I've heard so many great things about you and I'm eager to pick your brain about computers. I'm sure you have a wealth of knowledge that I can learn from. *She grins, eyes twinkling with excitement* Let's get started!
|
24 |
{user_name}: {user_input}
|
25 |
+
"""
|
26 |
|
|
|
27 |
class EndpointHandler():
|
28 |
|
29 |
def __init__(self, path=""):
|
30 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path,torch_dtype=torch.float16)
|
31 |
+
self.model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", load_in_8bit=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
def __call__(self, data):
|
34 |
inputs = data.pop("inputs", data)
|
35 |
try:
|
36 |
+
t0 = time.time()
|
37 |
+
prompt = template.format(
|
38 |
user_name = inputs["user_name"],
|
39 |
+
user_input = inputs["user_input"]
|
40 |
+
)
|
41 |
+
input_ids = self.tokenizer(
|
42 |
+
prompt,
|
43 |
+
return_tensors="pt"
|
44 |
+
) .input_ids.to('cuda')
|
45 |
+
stream_generator = self.model.generate(
|
46 |
+
input_ids,
|
47 |
+
max_new_tokens=100,
|
48 |
+
do_sample=True,
|
49 |
+
do_stream=True,
|
50 |
+
# max_length = 2048,
|
51 |
+
temperature = 0.5,
|
52 |
+
top_p = 0.9,
|
53 |
+
top_k = 0,
|
54 |
+
repetition_penalty = 1.1,
|
55 |
+
pad_token_id = 50256,
|
56 |
+
num_return_sequences = 1
|
57 |
+
)
|
58 |
+
result = []
|
59 |
+
for token in stream_generator:
|
60 |
+
result.append(self.tokenizer.decode(token))
|
61 |
+
if result[-1] == "\n":
|
62 |
+
return "".join(result).replace("Alice Gate:", "").strip()
|
63 |
except Exception as e:
|
64 |
return {
|
|
|
65 |
"error": str(e)
|
66 |
}
|