--- language: - en - fr license: apache-2.0 library_name: Tevatron tags: - vidore datasets: - Tevatron/docmatix-ir - HuggingFaceM4/Docmatix - Tevatron/msmarco-passage-aug - vidore/colpali_train_set - Tevatron/wiki-ss-nq base_model: - Qwen/Qwen2-VL-2B-Instruct --- # DSE-QWen2-2b-MRL-V1 DSE-QWen2-2b-MRL-V1 is a bi-encoder model designed to encode document screenshots into dense vectors for document retrieval. The Document Screenshot Embedding ([DSE](https://arxiv.org/abs/2406.11251)) approach captures documents in their original visual format, preserving all information such as text, images, and layout, thus avoiding tedious parsing and potential information loss. DSE aims to provide a generalizable embedding model for Text, PDF documents, Webpage, Slides retrieval. For example, DSE-QWen2-2b-MRL-V1 achieves **85.8** nDCG@5 on [ViDoRE](https://huggingface.co/spaces/vidore/vidore-leaderboard) leaderboard. ## Note: QWen vision encoder may take high GPU memory if the input image is large. Adjust `'resized_height':680 , 'resized_width':680` (see below) to fit VRAM based on GPU resources. ## How to Use the Model To support better effectiveness--efficiency trade-off, this checkpoint is trained to support: 1. Flexible representation dimension. 2. Flexible input image size. ### Load the Model and Processor ```python import torch from transformers import AutoProcessor, Qwen2VLForConditionalGeneration from qwen_vl_utils import process_vision_info min_pixels = 1*28*28 max_pixels = 2560*28*28 processor = AutoProcessor.from_pretrained("MrLight/dse-qwen2-2b-mrl-v1", min_pixels=min_pixels, max_pixels=max_pixels) model = Qwen2VLForConditionalGeneration.from_pretrained('MrLight/dse-qwen2-2b-mrl-v1', attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16).to('cuda:0').eval() processor.tokenizer.padding_side = "left" model.padding_side = "left" def get_embedding(last_hidden_state: torch.Tensor, dimension: int) -> torch.Tensor: reps = last_hidden_state[:, -1] reps = torch.nn.functional.normalize(reps[:, :dimension], p=2, dim=-1) return reps ``` ### Encode Text Query ```python from PIL import Image queries = ["Where can we see Llama?", "What is the LLaMA AI model?"] query_messages = [] for query in queries: message = [ { 'role': 'user', 'content': [ {'type': 'image', 'image': Image.new('RGB', (28, 28)), 'resized_height':1 , 'resized_width':1}, # need a dummy image here for an easier process. {'type': 'text', 'text': f'Query: {query}'}, ] } ] query_messages.append(message) query_texts = [ processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True) + "<|endoftext|>" for msg in query_messages ] query_image_inputs, query_video_inputs = process_vision_info(query_messages) query_inputs = processor(text=query_texts, images=query_image_inputs, videos=query_video_inputs, padding='longest', return_tensors='pt').to('cuda:0') cache_position = torch.arange(0, len(query_texts)) query_inputs = model.prepare_inputs_for_generation(**query_inputs, cache_position=cache_position, use_cache=False) with torch.no_grad(): output = model(**query_inputs, return_dict=True, output_hidden_states=True) query_embeddings = get_embedding(output.hidden_states[-1], 1536) # adjust dimensionality for efficiency trade-off, e.g. 512 ``` ### Encode Document Screenshot ```python import requests from io import BytesIO # URLs of the images url1 = "https://huggingface.co/Tevatron/dse-phi3-docmatix-v2/resolve/main/animal-llama.png" url2 = "https://huggingface.co/Tevatron/dse-phi3-docmatix-v2/resolve/main/meta-llama.png" # Download and open images response1 = requests.get(url1) response2 = requests.get(url2) doc_image1 = Image.open(BytesIO(response1.content)) doc_image2 = Image.open(BytesIO(response2.content)) doc_images = [doc_image1, doc_image2] doc_messages = [] for doc in doc_images: message = [ { 'role': 'user', 'content': [ {'type': 'image', 'image': doc}, #'resized_height':680 , 'resized_width':680} # adjust the image size for efficiency trade-off {'type': 'text', 'text': 'What is shown in this image?'} ] } ] doc_messages.append(message) doc_texts = [ processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True) + "<|endoftext|>" for msg in doc_messages ] doc_image_inputs, doc_video_inputs = process_vision_info(doc_messages) doc_inputs = processor(text=doc_texts, images=doc_image_inputs, videos=doc_video_inputs, padding='longest', return_tensors='pt').to('cuda:0') cache_position = torch.arange(0, len(doc_texts)) doc_inputs = model.prepare_inputs_for_generation(**doc_inputs, cache_position=cache_position, use_cache=False) with torch.no_grad(): output = model(**doc_inputs, return_dict=True, output_hidden_states=True) doc_embeddings = get_embedding(output.hidden_states[-1], 1536) # adjust dimensionality for efficiency trade-off e.g. 512 ``` ### Compute Similarity ```python from torch.nn.functional import cosine_similarity num_queries = query_embeddings.size(0) num_passages = doc_embeddings.size(0) for i in range(num_queries): query_embedding = query_embeddings[i].unsqueeze(0) similarities = cosine_similarity(query_embedding, doc_embeddings) print(f"Similarities for Query {i+1}: {similarities.cpu().float().numpy()}") ``` ### Encode Document Text This DSE checkpoint is warm-up with `Tevatron/msmarco-passage-aug`, thus the model can also effectively encode document as text input. ```python doc_texts = [ "The llama (/ˈlɑːmə/; Spanish pronunciation: [ˈʎama] or [ˈʝama]) (Lama glama) is a domesticated South American camelid, widely used as a meat and pack animal by Andean cultures since the pre-Columbian era.", "Llama (acronym for Large Language Model Meta AI, and formerly stylized as LLaMA) is a family of autoregressive large language models (LLMs) released by Meta AI starting in February 2023.[2][3] The latest version is Llama 3.1, released in July 2024.[4]" ] doc_messages = [] for doc in doc_texts: message = [ { 'role': 'user', 'content': [ {'type': 'image', 'image': Image.new('RGB', (28, 28)), 'resized_height':1 , 'resized_width':1}, # need a dummy image here for an easier process. {'type': 'text', 'text': f'Document: {doc}'} ] } ] doc_messages.append(message) doc_texts = [ processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True) + "<|endoftext|>" for msg in doc_messages ] doc_image_inputs, doc_video_inputs = process_vision_info(doc_messages) doc_inputs = processor(text=doc_texts, images=doc_image_inputs, videos=doc_video_inputs, padding='longest', return_tensors='pt').to('cuda:0') cache_position = torch.arange(0, len(doc_texts)) doc_inputs = model.prepare_inputs_for_generation(**doc_inputs, cache_position=cache_position, use_cache=False) with torch.no_grad(): output = model(**doc_inputs, return_dict=True, output_hidden_states=True) doc_embeddings = get_embedding(output.hidden_states[-1], 1536) # adjust dimensionality for efficiency trade-off e.g. 512 for i in range(num_queries): query_embedding = query_embeddings[i].unsqueeze(0) similarities = cosine_similarity(query_embedding, doc_embeddings) print(f"Similarities for Query {i+1}: {similarities.cpu().float().numpy()}") ``` ### Citation If you find this checkpoint is helpful, please consider citing QWen2, Docmatix, ViDoRe, and our DSE work.