Anthony Ndung'u
commited on
Commit
•
af50b58
1
Parent(s):
27b7c82
Upload main.py
Browse files
main.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import libraries
|
2 |
+
from pydantic import BaseModel
|
3 |
+
import pandas as pd
|
4 |
+
import joblib
|
5 |
+
import uvicorn
|
6 |
+
import numpy as np
|
7 |
+
from fastapi import FastAPI, HTTPException,Query
|
8 |
+
|
9 |
+
app = FastAPI()
|
10 |
+
|
11 |
+
###create home
|
12 |
+
@app.get('/')
|
13 |
+
def home():
|
14 |
+
return{'message':'Welcome to Sepsis Prediction Using Fastapi'}
|
15 |
+
|
16 |
+
## Load the model
|
17 |
+
model = joblib.load("src/rf_pipeline.joblib")
|
18 |
+
|
19 |
+
# Endpoint for predicting sepsis using a GET request
|
20 |
+
@app.post("/predict")
|
21 |
+
def predict_sepsis(
|
22 |
+
PRG: int = Query(..., description="Plasma_glucose"),
|
23 |
+
PL: int = Query(..., description="Blood_Work_R1"),
|
24 |
+
PR: int = Query(..., description="Blood_Pressure"),
|
25 |
+
SK: int = Query(..., description="Blood_Work_R2"),
|
26 |
+
TS: int = Query(..., description="Blood_Work_R3"),
|
27 |
+
M11: float = Query(..., description="BMI"),
|
28 |
+
BD2: float = Query(..., description="Blood_Work_R4"),
|
29 |
+
Age: int = Query(..., description="Age")
|
30 |
+
):
|
31 |
+
try:
|
32 |
+
# Convert input data to a dictionary
|
33 |
+
input_data = {
|
34 |
+
'PRG': PRG,
|
35 |
+
'PL': PL,
|
36 |
+
'PR': PR,
|
37 |
+
'SK': SK,
|
38 |
+
'TS': TS,
|
39 |
+
'M11': M11,
|
40 |
+
'BD2': BD2,
|
41 |
+
'Age': Age,
|
42 |
+
}
|
43 |
+
|
44 |
+
|
45 |
+
# Convert input_data to DataFrame
|
46 |
+
input_data_df = pd.DataFrame([input_data])
|
47 |
+
|
48 |
+
# Use the loaded model to make predictions
|
49 |
+
|
50 |
+
prediction= model.predict(input_data_df)[0]
|
51 |
+
|
52 |
+
sepsis_status = "patient has sepsis" if prediction == 1 else "Patient does not have sepsis"
|
53 |
+
|
54 |
+
# Return the prediction
|
55 |
+
return {"prediction": sepsis_status}
|
56 |
+
|
57 |
+
except Exception as e:
|
58 |
+
raise HTTPException(status_code=500, detail=str(e))
|
59 |
+
|
60 |
+
if __name__ == "__main__":
|
61 |
+
import uvicorn
|
62 |
+
import nest_asyncio
|
63 |
+
|
64 |
+
nest_asyncio.apply()
|
65 |
+
|
66 |
+
uvicorn.run(app, host="127.0.0.1", port=8003, log_level="info")
|