File size: 4,185 Bytes
4acfcac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: apache-2.0
base_model: Helsinki-NLP/opus-mt-lg-en
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: opus-mt-lg-en-informal
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-lg-en-informal
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-lg-en](https://huggingface.co/Helsinki-NLP/opus-mt-lg-en) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1343
- Bleu: 0.0
- Bleu Precision: [0.019908987485779295, 0.0006461339651087659, 0.0, 0.0]
- Bleu Brevity Penalty: 1.0
- Bleu Length Ratio: 1.2563
- Bleu Translation Length: 5274
- Bleu Reference Length: 4198
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Bleu Precision | Bleu Brevity Penalty | Bleu Length Ratio | Bleu Translation Length | Bleu Reference Length |
|:-------------:|:-----:|:----:|:---------------:|:----:|:--------------------------------------------------------:|:--------------------:|:-----------------:|:-----------------------:|:---------------------:|
| 4.568 | 1.0 | 119 | 0.8525 | 0.0 | [0.011322534989778267, 0.00017458100558659218, 0.0, 0.0] | 1.0 | 1.5148 | 6359 | 4198 |
| 0.6495 | 2.0 | 238 | 0.1701 | 0.0 | [0.012054948135688253, 0.0003405994550408719, 0.0, 0.0] | 0.8379 | 0.8497 | 3567 | 4198 |
| 0.1889 | 3.0 | 357 | 0.1443 | 0.0 | [0.0408483896307934, 0.0010443864229765013, 0.0, 0.0] | 0.5226 | 0.6065 | 2546 | 4198 |
| 0.1513 | 4.0 | 476 | 0.1384 | 0.0 | [0.03887070376432079, 0.0005515719801434088, 0.0, 0.0] | 0.4879 | 0.5822 | 2444 | 4198 |
| 0.1424 | 5.0 | 595 | 0.1357 | 0.0 | [0.027095148078134845, 0.0012106537530266344, 0.0, 0.0] | 1.0 | 1.1341 | 4761 | 4198 |
| 0.1331 | 6.0 | 714 | 0.1346 | 0.0 | [0.016541609822646658, 0.0005732849226065354, 0.0, 0.0] | 1.0 | 1.3969 | 5864 | 4198 |
| 0.1265 | 7.0 | 833 | 0.1340 | 0.0 | [0.03237891356703238, 0.0016097875080489374, 0.0, 0.0] | 0.8839 | 0.8902 | 3737 | 4198 |
| 0.1296 | 8.0 | 952 | 0.1339 | 0.0 | [0.026692456479690523, 0.0013218770654329147, 0.0, 0.0] | 1.0 | 1.2315 | 5170 | 4198 |
| 0.123 | 9.0 | 1071 | 0.1340 | 0.0 | [0.025897226753670472, 0.001404165691551603, 0.0, 0.0] | 1.0 | 1.1682 | 4904 | 4198 |
| 0.1227 | 10.0 | 1190 | 0.1339 | 0.0 | [0.014839915868193504, 0.0008830579033682352, 0.0, 0.0] | 1.0 | 2.0386 | 8558 | 4198 |
| 0.117 | 11.0 | 1309 | 0.1343 | 0.0 | [0.019908987485779295, 0.0006461339651087659, 0.0, 0.0] | 1.0 | 1.2563 | 5274 | 4198 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.1.2
- Datasets 2.19.1
- Tokenizers 0.19.1
|