MugheesAwan11 commited on
Commit
d21f609
·
verified ·
1 Parent(s): c302b1b

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,550 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_ndcg@100
23
+ - cosine_mrr@10
24
+ - cosine_map@100
25
+ pipeline_tag: sentence-similarity
26
+ tags:
27
+ - sentence-transformers
28
+ - sentence-similarity
29
+ - feature-extraction
30
+ - generated_from_trainer
31
+ - dataset_size:10000
32
+ - loss:MatryoshkaLoss
33
+ - loss:MultipleNegativesRankingLoss
34
+ widget:
35
+ - source_sentence: Politics is about action. The German government has to take some
36
+ action on the issue of NSA surveillance and German privacy or it will look weak.
37
+ Interior Minister Hans-Peter Friedrich went to Washington in July but was accused
38
+ of “returning empty-handed” and having “not moved a single step forward on any
39
+ of the key points”. [1] The stonewalling by the United States provides an opportunity
40
+ for opponents to Damage Merkel’s new government as well as potentially to show
41
+ gaps between the SDP and CSU. Merkel has been invited to visit Washington at some
42
+ point in 2014 by President Obama, [2] Merkel can’t afford for her own diplomacy
43
+ to have as little result as Friedrich’s. [1] Deutsche Welle, ‘SPF, Greens slam
44
+ Interior Minister Friedrich after US surveillance talks in Washington’, dw.de,
45
+ 13 July 2013, [2] Reuters, ‘Obama invites Merkel to visit during call about
46
+ trade, NATO’, 8 January 2014,
47
+ sentences:
48
+ - what was mrs griffin accused of doing
49
+ - are alcohol cigarettes dangerous
50
+ - could gmo help food production
51
+ - source_sentence: Schools such as those in the county of Harrold, TX [1] have already
52
+ introduced laws allowing teachers to carry pistols, but largely in a concealed
53
+ fashion. This therefore leaves children unawares and thus not distracted by seeing
54
+ teachers prominently carrying guns. Furthermore, with teachers carrying concealed
55
+ arms, any would-be attackers would be thrown by not knowing who to shoot first,
56
+ which would not be the case if police officers were the first on the scene. [1]
57
+ McKinley, James C., ‘In Texas School, Teachers Carry Books and Guns’, The New
58
+ York Times, 28 August 2008,
59
+ sentences:
60
+ - why are teachers allowed to carry guns?
61
+ - why is it important to prosecute
62
+ - what is victim mentality
63
+ - source_sentence: While any annexation would be mutually agreed there is no guarantee
64
+ that the whole international community would see it positively; any resistance
65
+ from groups within Lesotho and it could be a PR nightmare. Moreover the spin of
66
+ it being a humanitarian gesture is reliant on it following through and improving
67
+ conditions. If it succeeds then SA will likely be called upon to resolve other
68
+ humanitarian situations in the region such as in Swaziland.
69
+ sentences:
70
+ - why is congress power so important
71
+ - how africa is dependent on foreign aid
72
+ - should lesotho be annexed
73
+ - source_sentence: In the last 20 years, the number of people in the UK who identify
74
+ as religious has declined by 20%. This shows that religion as a whole is becoming
75
+ less important and, with it, marriage is becoming less important. (British Social
76
+ Attitudes Survey 2007)
77
+ sentences:
78
+ - why is it important for people to identify as religious
79
+ - is negotiation necessary for the government?
80
+ - does the lawyer have to be privy to mediation
81
+ - source_sentence: The ICC's ability to prosecute war criminals is both overstated
82
+ and simplistic. It has no force of its own, and must rely on its member states
83
+ to hand over criminals wanted for prosecution. This leads to cases like that of
84
+ Serbia, where wanted war criminals like Ratko Mladic are believed to have been
85
+ hidden with the complicity of the regime until finally handed over in 2011. The
86
+ absence of a force or any coercive means to bring suspects to trial also leads
87
+ to situations like that in Libya, whereby Colonel Gaddafi is wanted by the ICC
88
+ but the prosecution's case is germane if he manages his grip on power. Furthermore,
89
+ it relies on external funding to operate, and can only sustain cases so long as
90
+ financial support exists to see them through.
91
+ sentences:
92
+ - does the icc prosecute war crimes
93
+ - how to reduce phone usage
94
+ - does evolution prove that the creator did the work
95
+ model-index:
96
+ - name: SentenceTransformer based on BAAI/bge-base-en-v1.5
97
+ results:
98
+ - task:
99
+ type: information-retrieval
100
+ name: Information Retrieval
101
+ dataset:
102
+ name: dim 768
103
+ type: dim_768
104
+ metrics:
105
+ - type: cosine_accuracy@1
106
+ value: 0.186
107
+ name: Cosine Accuracy@1
108
+ - type: cosine_accuracy@3
109
+ value: 0.544
110
+ name: Cosine Accuracy@3
111
+ - type: cosine_accuracy@5
112
+ value: 0.6685
113
+ name: Cosine Accuracy@5
114
+ - type: cosine_accuracy@10
115
+ value: 0.7995
116
+ name: Cosine Accuracy@10
117
+ - type: cosine_precision@1
118
+ value: 0.186
119
+ name: Cosine Precision@1
120
+ - type: cosine_precision@3
121
+ value: 0.18133333333333332
122
+ name: Cosine Precision@3
123
+ - type: cosine_precision@5
124
+ value: 0.13369999999999999
125
+ name: Cosine Precision@5
126
+ - type: cosine_precision@10
127
+ value: 0.07995000000000001
128
+ name: Cosine Precision@10
129
+ - type: cosine_recall@1
130
+ value: 0.186
131
+ name: Cosine Recall@1
132
+ - type: cosine_recall@3
133
+ value: 0.544
134
+ name: Cosine Recall@3
135
+ - type: cosine_recall@5
136
+ value: 0.6685
137
+ name: Cosine Recall@5
138
+ - type: cosine_recall@10
139
+ value: 0.7995
140
+ name: Cosine Recall@10
141
+ - type: cosine_ndcg@10
142
+ value: 0.4889853894775273
143
+ name: Cosine Ndcg@10
144
+ - type: cosine_ndcg@100
145
+ value: 0.5263043331639856
146
+ name: Cosine Ndcg@100
147
+ - type: cosine_mrr@10
148
+ value: 0.38976746031746196
149
+ name: Cosine Mrr@10
150
+ - type: cosine_map@100
151
+ value: 0.39800392651408967
152
+ name: Cosine Map@100
153
+ ---
154
+
155
+ # SentenceTransformer based on BAAI/bge-base-en-v1.5
156
+
157
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
158
+
159
+ ## Model Details
160
+
161
+ ### Model Description
162
+ - **Model Type:** Sentence Transformer
163
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
164
+ - **Maximum Sequence Length:** 512 tokens
165
+ - **Output Dimensionality:** 768 tokens
166
+ - **Similarity Function:** Cosine Similarity
167
+ <!-- - **Training Dataset:** Unknown -->
168
+ - **Language:** en
169
+ - **License:** apache-2.0
170
+
171
+ ### Model Sources
172
+
173
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
174
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
175
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
176
+
177
+ ### Full Model Architecture
178
+
179
+ ```
180
+ SentenceTransformer(
181
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
182
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
183
+ (2): Normalize()
184
+ )
185
+ ```
186
+
187
+ ## Usage
188
+
189
+ ### Direct Usage (Sentence Transformers)
190
+
191
+ First install the Sentence Transformers library:
192
+
193
+ ```bash
194
+ pip install -U sentence-transformers
195
+ ```
196
+
197
+ Then you can load this model and run inference.
198
+ ```python
199
+ from sentence_transformers import SentenceTransformer
200
+
201
+ # Download from the 🤗 Hub
202
+ model = SentenceTransformer("MugheesAwan11/bge-base-arguana-dataset-10k-2k-e1")
203
+ # Run inference
204
+ sentences = [
205
+ "The ICC's ability to prosecute war criminals is both overstated and simplistic. It has no force of its own, and must rely on its member states to hand over criminals wanted for prosecution. This leads to cases like that of Serbia, where wanted war criminals like Ratko Mladic are believed to have been hidden with the complicity of the regime until finally handed over in 2011. The absence of a force or any coercive means to bring suspects to trial also leads to situations like that in Libya, whereby Colonel Gaddafi is wanted by the ICC but the prosecution's case is germane if he manages his grip on power. Furthermore, it relies on external funding to operate, and can only sustain cases so long as financial support exists to see them through.",
206
+ 'does the icc prosecute war crimes',
207
+ 'does evolution prove that the creator did the work',
208
+ ]
209
+ embeddings = model.encode(sentences)
210
+ print(embeddings.shape)
211
+ # [3, 768]
212
+
213
+ # Get the similarity scores for the embeddings
214
+ similarities = model.similarity(embeddings, embeddings)
215
+ print(similarities.shape)
216
+ # [3, 3]
217
+ ```
218
+
219
+ <!--
220
+ ### Direct Usage (Transformers)
221
+
222
+ <details><summary>Click to see the direct usage in Transformers</summary>
223
+
224
+ </details>
225
+ -->
226
+
227
+ <!--
228
+ ### Downstream Usage (Sentence Transformers)
229
+
230
+ You can finetune this model on your own dataset.
231
+
232
+ <details><summary>Click to expand</summary>
233
+
234
+ </details>
235
+ -->
236
+
237
+ <!--
238
+ ### Out-of-Scope Use
239
+
240
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
241
+ -->
242
+
243
+ ## Evaluation
244
+
245
+ ### Metrics
246
+
247
+ #### Information Retrieval
248
+ * Dataset: `dim_768`
249
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
250
+
251
+ | Metric | Value |
252
+ |:--------------------|:----------|
253
+ | cosine_accuracy@1 | 0.186 |
254
+ | cosine_accuracy@3 | 0.544 |
255
+ | cosine_accuracy@5 | 0.6685 |
256
+ | cosine_accuracy@10 | 0.7995 |
257
+ | cosine_precision@1 | 0.186 |
258
+ | cosine_precision@3 | 0.1813 |
259
+ | cosine_precision@5 | 0.1337 |
260
+ | cosine_precision@10 | 0.08 |
261
+ | cosine_recall@1 | 0.186 |
262
+ | cosine_recall@3 | 0.544 |
263
+ | cosine_recall@5 | 0.6685 |
264
+ | cosine_recall@10 | 0.7995 |
265
+ | cosine_ndcg@10 | 0.489 |
266
+ | cosine_ndcg@100 | 0.5263 |
267
+ | cosine_mrr@10 | 0.3898 |
268
+ | **cosine_map@100** | **0.398** |
269
+
270
+ <!--
271
+ ## Bias, Risks and Limitations
272
+
273
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
274
+ -->
275
+
276
+ <!--
277
+ ### Recommendations
278
+
279
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
280
+ -->
281
+
282
+ ## Training Details
283
+
284
+ ### Training Dataset
285
+
286
+ #### Unnamed Dataset
287
+
288
+
289
+ * Size: 10,000 training samples
290
+ * Columns: <code>positive</code> and <code>anchor</code>
291
+ * Approximate statistics based on the first 1000 samples:
292
+ | | positive | anchor |
293
+ |:--------|:-------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
294
+ | type | string | string |
295
+ | details | <ul><li>min: 29 tokens</li><li>mean: 203.36 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.5 tokens</li><li>max: 25 tokens</li></ul> |
296
+ * Samples:
297
+ | positive | anchor |
298
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------|
299
+ | <code>The act of killing is emotionally damaging To actually be involved in the death of another person is an incredibly traumatic experience. Soldiers coming back from war often suffer from ‘post-traumatic stress disorder’ which suggests that being in a situation in which you have to take another persons life has a long lasting impact on your mental health. This is also true for people who are not directly involved in the act of killing. For instance, the people who worked on developing the atomic bomb described an incredible guilt for what they had created even though they were not involved in the decision to drop the bombs. The same traumatic experiences would likely affect the person responsible for pulling the lever.</code> | <code>what is a killing and how can it affect the brain?</code> |
300
+ | <code>Deal with Corruption Guinea-Bissau’s institutions have become too corrupt to deal with the drug problem and require support. The police, army and judiciary have all been implicated in the drug trade. The involvement of state officials in drug trafficking means that criminals are not prosecuted against. When two soldiers and a civilian were apprehended with 635kg (worth £25.4 million in 2013), they were detained and then immediately released with Colonel Arsenio Blade claiming ‘They were on the road hitching a ride’1. Judges are often bribed or sent death threats when faced with sentencing those involved in the drug trade. The USA has provided restructuring assistance to institutions which have reduced corruption, such as in the Mexico Merida Initiative, and could do the same with Guinea Bissau. 1) Vulliamy,E. ‘How a tiny West African country became the world’s first narco state’, The Guardian, 9 March 2008 2) Corcoran,P. ‘Mexico Judicial Reforms Go Easy On Corrupt Judges’, In Sight Crime, 16 February 2012</code> | <code>what has changed guinea bissau</code> |
301
+ | <code>Western countries already benefit from extremely liberal laws. The USA is at present far better than most countries in their respect and regard for civil liberties. New security measures do not greatly compromise this liberty, and the US measures are at the very least comparable with similar measures already in effect in other democratic developed countries, e.g. Spain and the UK, which have had to cope with domestic terrorism for far longer than the USA. The facts speak for themselves – the USA enjoys a healthy western-liberalism the likes of which most of the world’s people cannot even conceive of. The issue of the erosion of a few minor liberties of (states like the US’s) citizens should be overlooked in favour of the much greater issue of protecting the very existence of that state. [1] [1] Zetter, Kim, ‘The Patriot Act Is Your Friend’, Wired, 24 February 2004, , accessed 9 September 2011</code> | <code>which political philosophy is true about the usa?</code> |
302
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
303
+ ```json
304
+ {
305
+ "loss": "MultipleNegativesRankingLoss",
306
+ "matryoshka_dims": [
307
+ 768
308
+ ],
309
+ "matryoshka_weights": [
310
+ 1
311
+ ],
312
+ "n_dims_per_step": -1
313
+ }
314
+ ```
315
+
316
+ ### Training Hyperparameters
317
+ #### Non-Default Hyperparameters
318
+
319
+ - `eval_strategy`: epoch
320
+ - `per_device_train_batch_size`: 32
321
+ - `per_device_eval_batch_size`: 16
322
+ - `learning_rate`: 2e-05
323
+ - `num_train_epochs`: 1
324
+ - `lr_scheduler_type`: cosine
325
+ - `warmup_ratio`: 0.1
326
+ - `bf16`: True
327
+ - `tf32`: True
328
+ - `load_best_model_at_end`: True
329
+ - `optim`: adamw_torch_fused
330
+ - `batch_sampler`: no_duplicates
331
+
332
+ #### All Hyperparameters
333
+ <details><summary>Click to expand</summary>
334
+
335
+ - `overwrite_output_dir`: False
336
+ - `do_predict`: False
337
+ - `eval_strategy`: epoch
338
+ - `prediction_loss_only`: True
339
+ - `per_device_train_batch_size`: 32
340
+ - `per_device_eval_batch_size`: 16
341
+ - `per_gpu_train_batch_size`: None
342
+ - `per_gpu_eval_batch_size`: None
343
+ - `gradient_accumulation_steps`: 1
344
+ - `eval_accumulation_steps`: None
345
+ - `learning_rate`: 2e-05
346
+ - `weight_decay`: 0.0
347
+ - `adam_beta1`: 0.9
348
+ - `adam_beta2`: 0.999
349
+ - `adam_epsilon`: 1e-08
350
+ - `max_grad_norm`: 1.0
351
+ - `num_train_epochs`: 1
352
+ - `max_steps`: -1
353
+ - `lr_scheduler_type`: cosine
354
+ - `lr_scheduler_kwargs`: {}
355
+ - `warmup_ratio`: 0.1
356
+ - `warmup_steps`: 0
357
+ - `log_level`: passive
358
+ - `log_level_replica`: warning
359
+ - `log_on_each_node`: True
360
+ - `logging_nan_inf_filter`: True
361
+ - `save_safetensors`: True
362
+ - `save_on_each_node`: False
363
+ - `save_only_model`: False
364
+ - `restore_callback_states_from_checkpoint`: False
365
+ - `no_cuda`: False
366
+ - `use_cpu`: False
367
+ - `use_mps_device`: False
368
+ - `seed`: 42
369
+ - `data_seed`: None
370
+ - `jit_mode_eval`: False
371
+ - `use_ipex`: False
372
+ - `bf16`: True
373
+ - `fp16`: False
374
+ - `fp16_opt_level`: O1
375
+ - `half_precision_backend`: auto
376
+ - `bf16_full_eval`: False
377
+ - `fp16_full_eval`: False
378
+ - `tf32`: True
379
+ - `local_rank`: 0
380
+ - `ddp_backend`: None
381
+ - `tpu_num_cores`: None
382
+ - `tpu_metrics_debug`: False
383
+ - `debug`: []
384
+ - `dataloader_drop_last`: False
385
+ - `dataloader_num_workers`: 0
386
+ - `dataloader_prefetch_factor`: None
387
+ - `past_index`: -1
388
+ - `disable_tqdm`: False
389
+ - `remove_unused_columns`: True
390
+ - `label_names`: None
391
+ - `load_best_model_at_end`: True
392
+ - `ignore_data_skip`: False
393
+ - `fsdp`: []
394
+ - `fsdp_min_num_params`: 0
395
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
396
+ - `fsdp_transformer_layer_cls_to_wrap`: None
397
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
398
+ - `deepspeed`: None
399
+ - `label_smoothing_factor`: 0.0
400
+ - `optim`: adamw_torch_fused
401
+ - `optim_args`: None
402
+ - `adafactor`: False
403
+ - `group_by_length`: False
404
+ - `length_column_name`: length
405
+ - `ddp_find_unused_parameters`: None
406
+ - `ddp_bucket_cap_mb`: None
407
+ - `ddp_broadcast_buffers`: False
408
+ - `dataloader_pin_memory`: True
409
+ - `dataloader_persistent_workers`: False
410
+ - `skip_memory_metrics`: True
411
+ - `use_legacy_prediction_loop`: False
412
+ - `push_to_hub`: False
413
+ - `resume_from_checkpoint`: None
414
+ - `hub_model_id`: None
415
+ - `hub_strategy`: every_save
416
+ - `hub_private_repo`: False
417
+ - `hub_always_push`: False
418
+ - `gradient_checkpointing`: False
419
+ - `gradient_checkpointing_kwargs`: None
420
+ - `include_inputs_for_metrics`: False
421
+ - `eval_do_concat_batches`: True
422
+ - `fp16_backend`: auto
423
+ - `push_to_hub_model_id`: None
424
+ - `push_to_hub_organization`: None
425
+ - `mp_parameters`:
426
+ - `auto_find_batch_size`: False
427
+ - `full_determinism`: False
428
+ - `torchdynamo`: None
429
+ - `ray_scope`: last
430
+ - `ddp_timeout`: 1800
431
+ - `torch_compile`: False
432
+ - `torch_compile_backend`: None
433
+ - `torch_compile_mode`: None
434
+ - `dispatch_batches`: None
435
+ - `split_batches`: None
436
+ - `include_tokens_per_second`: False
437
+ - `include_num_input_tokens_seen`: False
438
+ - `neftune_noise_alpha`: None
439
+ - `optim_target_modules`: None
440
+ - `batch_eval_metrics`: False
441
+ - `batch_sampler`: no_duplicates
442
+ - `multi_dataset_batch_sampler`: proportional
443
+
444
+ </details>
445
+
446
+ ### Training Logs
447
+ | Epoch | Step | Training Loss | dim_768_cosine_map@100 |
448
+ |:-------:|:-------:|:-------------:|:----------------------:|
449
+ | 0.0319 | 10 | 0.5613 | - |
450
+ | 0.0639 | 20 | 0.4543 | - |
451
+ | 0.0958 | 30 | 0.2893 | - |
452
+ | 0.1278 | 40 | 0.2127 | - |
453
+ | 0.1597 | 50 | 0.1528 | - |
454
+ | 0.1917 | 60 | 0.1689 | - |
455
+ | 0.2236 | 70 | 0.1812 | - |
456
+ | 0.2556 | 80 | 0.1531 | - |
457
+ | 0.2875 | 90 | 0.1685 | - |
458
+ | 0.3195 | 100 | 0.1666 | - |
459
+ | 0.3514 | 110 | 0.1504 | - |
460
+ | 0.3834 | 120 | 0.139 | - |
461
+ | 0.4153 | 130 | 0.1174 | - |
462
+ | 0.4473 | 140 | 0.1602 | - |
463
+ | 0.4792 | 150 | 0.178 | - |
464
+ | 0.5112 | 160 | 0.1481 | - |
465
+ | 0.5431 | 170 | 0.1145 | - |
466
+ | 0.5751 | 180 | 0.1502 | - |
467
+ | 0.6070 | 190 | 0.1189 | - |
468
+ | 0.6390 | 200 | 0.1648 | - |
469
+ | 0.6709 | 210 | 0.2004 | - |
470
+ | 0.7029 | 220 | 0.1565 | - |
471
+ | 0.7348 | 230 | 0.1447 | - |
472
+ | 0.7668 | 240 | 0.1411 | - |
473
+ | 0.7987 | 250 | 0.1326 | - |
474
+ | 0.8307 | 260 | 0.1562 | - |
475
+ | 0.8626 | 270 | 0.1571 | - |
476
+ | 0.8946 | 280 | 0.1211 | - |
477
+ | 0.9265 | 290 | 0.1399 | - |
478
+ | 0.9585 | 300 | 0.1884 | - |
479
+ | 0.9904 | 310 | 0.1537 | - |
480
+ | **1.0** | **313** | **-** | **0.398** |
481
+
482
+ * The bold row denotes the saved checkpoint.
483
+
484
+ ### Framework Versions
485
+ - Python: 3.10.14
486
+ - Sentence Transformers: 3.0.1
487
+ - Transformers: 4.41.2
488
+ - PyTorch: 2.1.2+cu121
489
+ - Accelerate: 0.31.0
490
+ - Datasets: 2.19.1
491
+ - Tokenizers: 0.19.1
492
+
493
+ ## Citation
494
+
495
+ ### BibTeX
496
+
497
+ #### Sentence Transformers
498
+ ```bibtex
499
+ @inproceedings{reimers-2019-sentence-bert,
500
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
501
+ author = "Reimers, Nils and Gurevych, Iryna",
502
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
503
+ month = "11",
504
+ year = "2019",
505
+ publisher = "Association for Computational Linguistics",
506
+ url = "https://arxiv.org/abs/1908.10084",
507
+ }
508
+ ```
509
+
510
+ #### MatryoshkaLoss
511
+ ```bibtex
512
+ @misc{kusupati2024matryoshka,
513
+ title={Matryoshka Representation Learning},
514
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
515
+ year={2024},
516
+ eprint={2205.13147},
517
+ archivePrefix={arXiv},
518
+ primaryClass={cs.LG}
519
+ }
520
+ ```
521
+
522
+ #### MultipleNegativesRankingLoss
523
+ ```bibtex
524
+ @misc{henderson2017efficient,
525
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
526
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
527
+ year={2017},
528
+ eprint={1705.00652},
529
+ archivePrefix={arXiv},
530
+ primaryClass={cs.CL}
531
+ }
532
+ ```
533
+
534
+ <!--
535
+ ## Glossary
536
+
537
+ *Clearly define terms in order to be accessible across audiences.*
538
+ -->
539
+
540
+ <!--
541
+ ## Model Card Authors
542
+
543
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
544
+ -->
545
+
546
+ <!--
547
+ ## Model Card Contact
548
+
549
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
550
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38b3b9bd1065c029429f4073430addb71f25bfda94110122e141111e56d76977
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff