MugheesAwan11 commited on
Commit
912fae4
·
verified ·
1 Parent(s): 2aaa6cb

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,631 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ datasets: []
4
+ language:
5
+ - en
6
+ library_name: sentence-transformers
7
+ license: apache-2.0
8
+ metrics:
9
+ - cosine_accuracy@1
10
+ - cosine_accuracy@3
11
+ - cosine_accuracy@5
12
+ - cosine_accuracy@10
13
+ - cosine_precision@1
14
+ - cosine_precision@3
15
+ - cosine_precision@5
16
+ - cosine_precision@10
17
+ - cosine_recall@1
18
+ - cosine_recall@3
19
+ - cosine_recall@5
20
+ - cosine_recall@10
21
+ - cosine_ndcg@10
22
+ - cosine_ndcg@100
23
+ - cosine_mrr@10
24
+ - cosine_map@100
25
+ pipeline_tag: sentence-similarity
26
+ tags:
27
+ - sentence-transformers
28
+ - sentence-similarity
29
+ - feature-extraction
30
+ - generated_from_trainer
31
+ - dataset_size:9000
32
+ - loss:MatryoshkaLoss
33
+ - loss:MultipleNegativesRankingLoss
34
+ widget:
35
+ - source_sentence: ' and Banking and Securities Services, and that helps us in FX,
36
+ in commodities and in rates around the world. So, Markets is important both in
37
+ terms of its leadership, but also, how it fits into the strengths that we have
38
+ from this simpler Citi of those five core interconnected businesses. We''ve demonstrated
39
+ solid returns in the past. I think a lot of the actions we''ve been taking will
40
+ help drive returns in the future. And you should be getting confidence when you
41
+ see the discipline we''re putting on to Copyright 2024 Citigroup Inc. 14 TRANSCRIPT
42
+ Citi Fourth Quarter 2023 Earnings Call January 12, 2024 RWA, 5.3, getting close
43
+ that target, we said at Investor Day. We''re moving that up to 6. The exits we''ve
44
+ got of nonstrategic businesses shows our focus on efficiency. And we''ve also
45
+ been doing some good investments in our technology, and that''s getting us into
46
+ a good place there. So'
47
+ sentences:
48
+ - What are the strengths and importance of Markets in terms of leadership and its
49
+ role in the interconnected businesses of Citigroup Inc?
50
+ - What are the additional resources available to help assess current finances and
51
+ plan for the future?
52
+ - ¿Puedo cerrar mi cuenta en cualquier momento y sin restricciones? ¿Qué sucede
53
+ si mi cuenta tiene un saldo de cero durante 90 días consecutivos? ¿Puedo obtener
54
+ copias de cheques cancelados o imágenes de los mismos en mi estado de cuenta?
55
+ ¿Debo llamar a CitiPhone Banking para solicitar las imágenes de los cheques? ¿Existen
56
+ comisiones adicionales o cargos asociados con esto? ¿Puedo acceder a las imágenes
57
+ de los cheques en línea y imprimirlos sin ningún costo adicional en citibankonline.com?
58
+ - source_sentence: ' legal, investment, or financial advice and is not a substitute
59
+ for professional advice. It does not indicate the availability of any Citi product
60
+ or service. For advice about your specific circumstances, you should consult a
61
+ qualified professional. Additional Resources - ! Insights and Tools Utilize these
62
+ resources to help you assess your current finances plan for the future. - ! FICO
63
+ Score Learn how FICO Scores are determined, why they matter and more. - ! Glossary
64
+ Review financial terms definitions to help you better understand credit finances.
65
+ !Back to Top Back to Top !Equal housing lender Contact Us - Consumer: 1-800-347-4934
66
+ - Consumer TTY: 711 - Business: 1-866-422-3091 - Business TTY: 711 - LostStolen:
67
+ 1-800-950-5114 - LostStolen TTY: 711 About Us - Locations - Careers - Site Map
68
+ Terms Conditions - Card Member Agreement - Security - Privacy - Notice At Collection
69
+ -'
70
+ sentences:
71
+ - What are the key steps in the tailor consultative process for wealth advisory
72
+ services to create a broad plan for the client's future?
73
+ - What are the benefits and program details of the American Airlines AAdvantage
74
+ MileUp Card? Can I earn AAdvantage miles for flights, upgrades, car rentals, hotel
75
+ stays, or vacation packages? How many AAdvantage miles can I earn at grocery stores,
76
+ including grocery delivery services? How many AAdvantage miles can I earn on eligible
77
+ American Airlines purchases? How many AAdvantage miles can I earn on all other
78
+ purchases? Can I earn loyalty points for eligible mile purchases? How many loyalty
79
+ points can I earn?
80
+ - What resources are available to help assess current finances and plan for the
81
+ future?
82
+ - source_sentence: ' Watchlist Alerts . 17 Delivery Settings and Hold Alerts for Brokerage
83
+ Alerts . 18 5. Electronic Delivery . 19 Add E-mail Addresses . 19 Set Up e-Delivery
84
+ for an Individual Account . 20 3 Set Up e-Delivery for Multiple Accounts using
85
+ Quick Enroll. 20 View Statements Reports. 21 View Trade Confirmations. 21 View
86
+ Tax Documents . 22 View Notifications . 22 6. Account Portfolio . 24 Overview
87
+ . 24 Portfolio Changes . 24 Quick Links . 25 Composition of Holdings . 25 Quick
88
+ Trade . 25 Open Orders Executed Trades . 25 Strong Weak Performers . 26 Portfolio
89
+ History . 26 News. 27 Balances . 28 Holdings . 29 Non Dollar transactions on Non
90
+ US exchanges valued at foreign currency of the exchange . 30 Realized GainLoss
91
+ . 32 History . 34 Projected Cash Flow. 35 7. Transact . 36 Trade Equities . '
92
+ sentences:
93
+ - What is the track record of the company in managing the risks associated with
94
+ its global network and what is its business model focused on?
95
+ - What are the watchlist alerts for brokerage alerts and how can electronic delivery
96
+ be set up for an individual account and multiple accounts using quick enroll?
97
+ How can statements reports, trade confirmations, tax documents, and notifications
98
+ be viewed? What is the overview of the account portfolio and how can portfolio
99
+ changes, quick links, composition of holdings, quick trades, open orders executed
100
+ trades, strong weak performers, portfolio history, news, balances, holdings, non-dollar
101
+ transactions on non-US exchanges valued at foreign currency of the exchange, realized
102
+ gain/loss, history, and projected cash flow be accessed? How can equities be traded?
103
+ - What does the EMV chip do and how does it work?
104
+ - source_sentence: . Los productos y servicios mencionados en este documento no se
105
+ ofrecen a individuos que residen en la Unin Europea, el Espacio Econmico Europeo,
106
+ Suiza, Guernsey, Jersey, Mnaco, Isla de Man, San Marino y el Vaticano. Su elegibilidad
107
+ para productos y servicios en particular est sujeta a una decisin definitiva de
108
+ nuestra parte. Este documento no es ni debe interpretarse como si fuera una oferta,
109
+ invitacin o solicitud para comprar o vender alguno de los productos y servicios
110
+ mencionados aqu a tales personas. 2020 Citibank, N.A., Miembro FDIC. Citi, Citi
111
+ con el Diseo del Arco y las otras marcas usadas en el presente documento son marcas
112
+ de servicio de Citigroup Inc. o sus filiales, usadas y registradas en todo el
113
+ mundo. Todos los derechos reservados. IFCBRO-0320SP Treasury
114
+ sentences:
115
+ - exime Citibank este cargo para cuentas Citigold cheques de diseo estndar para
116
+ todas Pedidos de chequeras, cheques oficiales, entrega rpida en el pas de tarjetas
117
+ de dbito de reemplazo, giro para clientes, cargos por investigacin y proceso de
118
+ verificacin consular o carta de referencia, cumplimiento de proceso legal y servicios
119
+ de cobranza. También exime Citibank este cargo para cuentas Citigold en el caso
120
+ de canje de cupones de bonos.
121
+ - What are the products and services mentioned in this document and where are they
122
+ offered? Can individuals residing in the European Union, the European Economic
123
+ Area, Switzerland, Guernsey, Jersey, Monaco, Isle of Man, San Marino, and the
124
+ Vatican avail these products and services? Is this document an offer, invitation,
125
+ or solicitation to buy or sell any of the mentioned products and services to such
126
+ individuals? Which organization owns the trademarks and service marks used in
127
+ this document?
128
+ - How can credit card points be redeemed for cash and what can the cash be used
129
+ for?
130
+ - source_sentence: ' Drive, Attn: Arbitration Opt Out, San Antonio, TX 78245. Your
131
+ rejection notice must be mailed within 45 days of account opening. Your rejection
132
+ notice must state that you reject the arbitration provision and include your name,
133
+ address, account number and personal signature. No one else may sign the rejection
134
+ notice. Your rejection notice will not apply to the arbitration provision governing
135
+ any other account that you have or had with us. Rejection of this arbitration
136
+ provision wont affect your other rights or responsibilities under this Agreement,
137
+ including use of the account. 68 Appendix 1: Fee Schedule The following Checkbook
138
+ Order Fee, Safe Deposit Fee, Fee Chart, and Wire Transfer Fee Chart are known
139
+ as the Fee Schedule. Unless otherwise stated, all fees described in the Fee Schedule
140
+ are charged to the account associated with the product or service. Checkbook Orders.
141
+ Fees will be charged for standard and Non-Standard checkbook orders. Non-Standard
142
+ Checkbook Orders include non-standard design, non-standard lettering'
143
+ sentences:
144
+ - How can I start building credit?
145
+ - What is the Annual Percentage Yield for the Citigold Private Client Pendant Exclusive
146
+ 24K Gold Rabbit on the Moon or IL in the states of NY, CT, MD, VA, DC, CA, NV,
147
+ NJ and select markets in FL?
148
+ - What is the process for rejecting the arbitration provision and what information
149
+ should be included in the rejection notice?
150
+ model-index:
151
+ - name: SentenceTransformer based on BAAI/bge-base-en-v1.5
152
+ results:
153
+ - task:
154
+ type: information-retrieval
155
+ name: Information Retrieval
156
+ dataset:
157
+ name: dim 768
158
+ type: dim_768
159
+ metrics:
160
+ - type: cosine_accuracy@1
161
+ value: 0.524
162
+ name: Cosine Accuracy@1
163
+ - type: cosine_accuracy@3
164
+ value: 0.718
165
+ name: Cosine Accuracy@3
166
+ - type: cosine_accuracy@5
167
+ value: 0.7826666666666666
168
+ name: Cosine Accuracy@5
169
+ - type: cosine_accuracy@10
170
+ value: 0.848
171
+ name: Cosine Accuracy@10
172
+ - type: cosine_precision@1
173
+ value: 0.524
174
+ name: Cosine Precision@1
175
+ - type: cosine_precision@3
176
+ value: 0.23933333333333334
177
+ name: Cosine Precision@3
178
+ - type: cosine_precision@5
179
+ value: 0.1565333333333333
180
+ name: Cosine Precision@5
181
+ - type: cosine_precision@10
182
+ value: 0.08479999999999999
183
+ name: Cosine Precision@10
184
+ - type: cosine_recall@1
185
+ value: 0.524
186
+ name: Cosine Recall@1
187
+ - type: cosine_recall@3
188
+ value: 0.718
189
+ name: Cosine Recall@3
190
+ - type: cosine_recall@5
191
+ value: 0.7826666666666666
192
+ name: Cosine Recall@5
193
+ - type: cosine_recall@10
194
+ value: 0.848
195
+ name: Cosine Recall@10
196
+ - type: cosine_ndcg@10
197
+ value: 0.6849393771058847
198
+ name: Cosine Ndcg@10
199
+ - type: cosine_ndcg@100
200
+ value: 0.7108472738066071
201
+ name: Cosine Ndcg@100
202
+ - type: cosine_mrr@10
203
+ value: 0.6327346560846572
204
+ name: Cosine Mrr@10
205
+ - type: cosine_map@100
206
+ value: 0.638367026629088
207
+ name: Cosine Map@100
208
+ ---
209
+
210
+ # SentenceTransformer based on BAAI/bge-base-en-v1.5
211
+
212
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
213
+
214
+ ## Model Details
215
+
216
+ ### Model Description
217
+ - **Model Type:** Sentence Transformer
218
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
219
+ - **Maximum Sequence Length:** 512 tokens
220
+ - **Output Dimensionality:** 768 tokens
221
+ - **Similarity Function:** Cosine Similarity
222
+ <!-- - **Training Dataset:** Unknown -->
223
+ - **Language:** en
224
+ - **License:** apache-2.0
225
+
226
+ ### Model Sources
227
+
228
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
229
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
230
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
231
+
232
+ ### Full Model Architecture
233
+
234
+ ```
235
+ SentenceTransformer(
236
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
237
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
238
+ (2): Normalize()
239
+ )
240
+ ```
241
+
242
+ ## Usage
243
+
244
+ ### Direct Usage (Sentence Transformers)
245
+
246
+ First install the Sentence Transformers library:
247
+
248
+ ```bash
249
+ pip install -U sentence-transformers
250
+ ```
251
+
252
+ Then you can load this model and run inference.
253
+ ```python
254
+ from sentence_transformers import SentenceTransformer
255
+
256
+ # Download from the 🤗 Hub
257
+ model = SentenceTransformer("MugheesAwan11/bge-base-citi-dataset-detailed-9k-1_5k-e1")
258
+ # Run inference
259
+ sentences = [
260
+ ' Drive, Attn: Arbitration Opt Out, San Antonio, TX 78245. Your rejection notice must be mailed within 45 days of account opening. Your rejection notice must state that you reject the arbitration provision and include your name, address, account number and personal signature. No one else may sign the rejection notice. Your rejection notice will not apply to the arbitration provision governing any other account that you have or had with us. Rejection of this arbitration provision wont affect your other rights or responsibilities under this Agreement, including use of the account. 68 Appendix 1: Fee Schedule The following Checkbook Order Fee, Safe Deposit Fee, Fee Chart, and Wire Transfer Fee Chart are known as the Fee Schedule. Unless otherwise stated, all fees described in the Fee Schedule are charged to the account associated with the product or service. Checkbook Orders. Fees will be charged for standard and Non-Standard checkbook orders. Non-Standard Checkbook Orders include non-standard design, non-standard lettering',
261
+ 'What is the process for rejecting the arbitration provision and what information should be included in the rejection notice?',
262
+ 'What is the Annual Percentage Yield for the Citigold Private Client Pendant Exclusive 24K Gold Rabbit on the Moon or IL in the states of NY, CT, MD, VA, DC, CA, NV, NJ and select markets in FL?',
263
+ ]
264
+ embeddings = model.encode(sentences)
265
+ print(embeddings.shape)
266
+ # [3, 768]
267
+
268
+ # Get the similarity scores for the embeddings
269
+ similarities = model.similarity(embeddings, embeddings)
270
+ print(similarities.shape)
271
+ # [3, 3]
272
+ ```
273
+
274
+ <!--
275
+ ### Direct Usage (Transformers)
276
+
277
+ <details><summary>Click to see the direct usage in Transformers</summary>
278
+
279
+ </details>
280
+ -->
281
+
282
+ <!--
283
+ ### Downstream Usage (Sentence Transformers)
284
+
285
+ You can finetune this model on your own dataset.
286
+
287
+ <details><summary>Click to expand</summary>
288
+
289
+ </details>
290
+ -->
291
+
292
+ <!--
293
+ ### Out-of-Scope Use
294
+
295
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
296
+ -->
297
+
298
+ ## Evaluation
299
+
300
+ ### Metrics
301
+
302
+ #### Information Retrieval
303
+ * Dataset: `dim_768`
304
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
305
+
306
+ | Metric | Value |
307
+ |:--------------------|:-----------|
308
+ | cosine_accuracy@1 | 0.524 |
309
+ | cosine_accuracy@3 | 0.718 |
310
+ | cosine_accuracy@5 | 0.7827 |
311
+ | cosine_accuracy@10 | 0.848 |
312
+ | cosine_precision@1 | 0.524 |
313
+ | cosine_precision@3 | 0.2393 |
314
+ | cosine_precision@5 | 0.1565 |
315
+ | cosine_precision@10 | 0.0848 |
316
+ | cosine_recall@1 | 0.524 |
317
+ | cosine_recall@3 | 0.718 |
318
+ | cosine_recall@5 | 0.7827 |
319
+ | cosine_recall@10 | 0.848 |
320
+ | cosine_ndcg@10 | 0.6849 |
321
+ | cosine_ndcg@100 | 0.7108 |
322
+ | cosine_mrr@10 | 0.6327 |
323
+ | **cosine_map@100** | **0.6384** |
324
+
325
+ <!--
326
+ ## Bias, Risks and Limitations
327
+
328
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
329
+ -->
330
+
331
+ <!--
332
+ ### Recommendations
333
+
334
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
335
+ -->
336
+
337
+ ## Training Details
338
+
339
+ ### Training Dataset
340
+
341
+ #### Unnamed Dataset
342
+
343
+
344
+ * Size: 9,000 training samples
345
+ * Columns: <code>positive</code> and <code>anchor</code>
346
+ * Approximate statistics based on the first 1000 samples:
347
+ | | positive | anchor |
348
+ |:--------|:--------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
349
+ | type | string | string |
350
+ | details | <ul><li>min: 152 tokens</li><li>mean: 206.96 tokens</li><li>max: 299 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 52.08 tokens</li><li>max: 281 tokens</li></ul> |
351
+ * Samples:
352
+ | positive | anchor |
353
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
354
+ | <code> adverse effect on the value of any Index Linked Product. 15 Citi Investment Strategies Citi Flexible Allocation 6 Excess Return Index Index General Conditions Section D: Definitions 16 Citi Investment Strategies Citi Flexible Allocation 6 Excess Return Index Index General Conditions Definitions References to the "applicable Index Methodology" are references to the Index Methodology relating to the relevant Index which together with these Index General Conditions completes the Index Conditions for such Index. References to a "Section" shall be references to a section of these Index General Conditions. References to a "Part" shall be references to a part of the applicable Index Methodology. "Adjustment Event" shall, in respect of a Constituent, have the meaning given to it in the Constituent Schedule applicable to such Constituent. "Affected Constituent" shall have the meaning given to it in Section B . "Affiliate" shall mean, in respect of a person, any entity controlled by such person, any entity which controls</code> | <code>What is the meaning of "applicable Index Methodology" in the Index General Conditions? What does "Section" refer to in the Index General Conditions? How is "Part" defined in the applicable Index Methodology? What is the definition of "Adjustment Event" in relation to a Constituent? How is an "Affected Constituent" defined in Section B? What is the definition of "Affiliate" in relation to a person?</code> |
355
+ | <code> that the Depositary andor the Custodian may in the future identify from the balance of Shares on deposit in the DR program as belonging to the holders of DRs in the DR Balance on the basis of a full or partial reconciliation of the Share-to-DR imbalance created by the Automatic Conversions and Forced Conversions. The is no guarantee that any such reconciliation will be successful or that any such Shares will be available any time in the near or distant future, and as a result there is no indication that the DRs credited to the DR balance have, or will in the future have, any value. The creation of the DR Balance and any credit of DRs in the DR balance to a Beneficial Owner is purely an accommodation to the Beneficial Owner and does not represent any undertaking of any value or service. Neither the Depositary nor the Custodian undertake in any way to take any action on behalf of the holders of DRs credited to the DR balance to retrieve any Shares from third parties</code> | <code>What is the likelihood of the Depositary and/or the Custodian successfully reconciling the Share-to-DR imbalance in the DR program and identifying Shares belonging to DR holders in the DR Balance? Is there any guarantee of the availability or future value of these Shares? Are the DRs credited to the DR balance of any value? Does the creation of the DR Balance and credit of DRs to Beneficial Owners represent any commitment of value or service? Do the Depositary and the Custodian have any responsibility to retrieve Shares from third parties on behalf of DR holders credited to the DR balance?</code> |
356
+ | <code> of ways to save money while shopping online. Thats why a browser extension like Citi Shop can be a great addition to your online shopping experience. Lets look at how the Citi Shop extension works. Contact helpdeskciti.com What is the Citi Shop Browser Extension? Citi Shop is a free desktop browser extension you can download through the Chrome, Edge or Safari app stores. Once installed, enroll your eligible Citi credit card and let the Citi Shop program automatically search for available offers at more than 5,000 online merchants across the internet. How to Install the Citi Shop Browser Extension First, download the Citi Shop browser extension from the Chrome, Edge or Safari app store for your desktop browser. Once downloaded, you will be required to enroll your eligible Citi credit card. Contact helpdeskciti.com How to Use the Citi Shop Browser Extension Simply shop at your favorite online merchants. The Citi Shop program automatically searches behind the scenes to find money-saving offers percent</code> | <code>What is the Citi Shop Browser Extension and how does it work? How can I install the Citi Shop Browser Extension for my desktop browser? How do I use the Citi Shop Browser Extension to save money while shopping online? Who can I contact for help with the Citi Shop Browser Extension?</code> |
357
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
358
+ ```json
359
+ {
360
+ "loss": "MultipleNegativesRankingLoss",
361
+ "matryoshka_dims": [
362
+ 768
363
+ ],
364
+ "matryoshka_weights": [
365
+ 1
366
+ ],
367
+ "n_dims_per_step": -1
368
+ }
369
+ ```
370
+
371
+ ### Training Hyperparameters
372
+ #### Non-Default Hyperparameters
373
+
374
+ - `eval_strategy`: epoch
375
+ - `per_device_train_batch_size`: 32
376
+ - `per_device_eval_batch_size`: 16
377
+ - `learning_rate`: 2e-05
378
+ - `num_train_epochs`: 2
379
+ - `lr_scheduler_type`: cosine
380
+ - `warmup_ratio`: 0.1
381
+ - `bf16`: True
382
+ - `tf32`: True
383
+ - `load_best_model_at_end`: True
384
+ - `optim`: adamw_torch_fused
385
+ - `batch_sampler`: no_duplicates
386
+
387
+ #### All Hyperparameters
388
+ <details><summary>Click to expand</summary>
389
+
390
+ - `overwrite_output_dir`: False
391
+ - `do_predict`: False
392
+ - `eval_strategy`: epoch
393
+ - `prediction_loss_only`: True
394
+ - `per_device_train_batch_size`: 32
395
+ - `per_device_eval_batch_size`: 16
396
+ - `per_gpu_train_batch_size`: None
397
+ - `per_gpu_eval_batch_size`: None
398
+ - `gradient_accumulation_steps`: 1
399
+ - `eval_accumulation_steps`: None
400
+ - `learning_rate`: 2e-05
401
+ - `weight_decay`: 0.0
402
+ - `adam_beta1`: 0.9
403
+ - `adam_beta2`: 0.999
404
+ - `adam_epsilon`: 1e-08
405
+ - `max_grad_norm`: 1.0
406
+ - `num_train_epochs`: 2
407
+ - `max_steps`: -1
408
+ - `lr_scheduler_type`: cosine
409
+ - `lr_scheduler_kwargs`: {}
410
+ - `warmup_ratio`: 0.1
411
+ - `warmup_steps`: 0
412
+ - `log_level`: passive
413
+ - `log_level_replica`: warning
414
+ - `log_on_each_node`: True
415
+ - `logging_nan_inf_filter`: True
416
+ - `save_safetensors`: True
417
+ - `save_on_each_node`: False
418
+ - `save_only_model`: False
419
+ - `restore_callback_states_from_checkpoint`: False
420
+ - `no_cuda`: False
421
+ - `use_cpu`: False
422
+ - `use_mps_device`: False
423
+ - `seed`: 42
424
+ - `data_seed`: None
425
+ - `jit_mode_eval`: False
426
+ - `use_ipex`: False
427
+ - `bf16`: True
428
+ - `fp16`: False
429
+ - `fp16_opt_level`: O1
430
+ - `half_precision_backend`: auto
431
+ - `bf16_full_eval`: False
432
+ - `fp16_full_eval`: False
433
+ - `tf32`: True
434
+ - `local_rank`: 0
435
+ - `ddp_backend`: None
436
+ - `tpu_num_cores`: None
437
+ - `tpu_metrics_debug`: False
438
+ - `debug`: []
439
+ - `dataloader_drop_last`: False
440
+ - `dataloader_num_workers`: 0
441
+ - `dataloader_prefetch_factor`: None
442
+ - `past_index`: -1
443
+ - `disable_tqdm`: False
444
+ - `remove_unused_columns`: True
445
+ - `label_names`: None
446
+ - `load_best_model_at_end`: True
447
+ - `ignore_data_skip`: False
448
+ - `fsdp`: []
449
+ - `fsdp_min_num_params`: 0
450
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
451
+ - `fsdp_transformer_layer_cls_to_wrap`: None
452
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
453
+ - `deepspeed`: None
454
+ - `label_smoothing_factor`: 0.0
455
+ - `optim`: adamw_torch_fused
456
+ - `optim_args`: None
457
+ - `adafactor`: False
458
+ - `group_by_length`: False
459
+ - `length_column_name`: length
460
+ - `ddp_find_unused_parameters`: None
461
+ - `ddp_bucket_cap_mb`: None
462
+ - `ddp_broadcast_buffers`: False
463
+ - `dataloader_pin_memory`: True
464
+ - `dataloader_persistent_workers`: False
465
+ - `skip_memory_metrics`: True
466
+ - `use_legacy_prediction_loop`: False
467
+ - `push_to_hub`: False
468
+ - `resume_from_checkpoint`: None
469
+ - `hub_model_id`: None
470
+ - `hub_strategy`: every_save
471
+ - `hub_private_repo`: False
472
+ - `hub_always_push`: False
473
+ - `gradient_checkpointing`: False
474
+ - `gradient_checkpointing_kwargs`: None
475
+ - `include_inputs_for_metrics`: False
476
+ - `eval_do_concat_batches`: True
477
+ - `fp16_backend`: auto
478
+ - `push_to_hub_model_id`: None
479
+ - `push_to_hub_organization`: None
480
+ - `mp_parameters`:
481
+ - `auto_find_batch_size`: False
482
+ - `full_determinism`: False
483
+ - `torchdynamo`: None
484
+ - `ray_scope`: last
485
+ - `ddp_timeout`: 1800
486
+ - `torch_compile`: False
487
+ - `torch_compile_backend`: None
488
+ - `torch_compile_mode`: None
489
+ - `dispatch_batches`: None
490
+ - `split_batches`: None
491
+ - `include_tokens_per_second`: False
492
+ - `include_num_input_tokens_seen`: False
493
+ - `neftune_noise_alpha`: None
494
+ - `optim_target_modules`: None
495
+ - `batch_eval_metrics`: False
496
+ - `batch_sampler`: no_duplicates
497
+ - `multi_dataset_batch_sampler`: proportional
498
+
499
+ </details>
500
+
501
+ ### Training Logs
502
+ | Epoch | Step | Training Loss | dim_768_cosine_map@100 |
503
+ |:-------:|:-------:|:-------------:|:----------------------:|
504
+ | 0.0355 | 10 | 0.7377 | - |
505
+ | 0.0709 | 20 | 0.5614 | - |
506
+ | 0.1064 | 30 | 0.4571 | - |
507
+ | 0.1418 | 40 | 0.2944 | - |
508
+ | 0.1773 | 50 | 0.2584 | - |
509
+ | 0.2128 | 60 | 0.1855 | - |
510
+ | 0.2482 | 70 | 0.1699 | - |
511
+ | 0.2837 | 80 | 0.2212 | - |
512
+ | 0.3191 | 90 | 0.1827 | - |
513
+ | 0.3546 | 100 | 0.1801 | - |
514
+ | 0.3901 | 110 | 0.1836 | - |
515
+ | 0.4255 | 120 | 0.1112 | - |
516
+ | 0.4610 | 130 | 0.1638 | - |
517
+ | 0.4965 | 140 | 0.1355 | - |
518
+ | 0.5319 | 150 | 0.0873 | - |
519
+ | 0.5674 | 160 | 0.1852 | - |
520
+ | 0.6028 | 170 | 0.1424 | - |
521
+ | 0.6383 | 180 | 0.1467 | - |
522
+ | 0.6738 | 190 | 0.1879 | - |
523
+ | 0.7092 | 200 | 0.1382 | - |
524
+ | 0.7447 | 210 | 0.1358 | - |
525
+ | 0.7801 | 220 | 0.0906 | - |
526
+ | 0.8156 | 230 | 0.1173 | - |
527
+ | 0.8511 | 240 | 0.1196 | - |
528
+ | 0.8865 | 250 | 0.1251 | - |
529
+ | 0.9220 | 260 | 0.0922 | - |
530
+ | 0.9574 | 270 | 0.1344 | - |
531
+ | 0.9929 | 280 | 0.0751 | - |
532
+ | **1.0** | **282** | **-** | **0.6395** |
533
+ | 1.0284 | 290 | 0.166 | - |
534
+ | 1.0638 | 300 | 0.0842 | - |
535
+ | 1.0993 | 310 | 0.098 | - |
536
+ | 1.1348 | 320 | 0.0674 | - |
537
+ | 1.1702 | 330 | 0.071 | - |
538
+ | 1.2057 | 340 | 0.0527 | - |
539
+ | 1.2411 | 350 | 0.0401 | - |
540
+ | 1.2766 | 360 | 0.0575 | - |
541
+ | 1.3121 | 370 | 0.0418 | - |
542
+ | 1.3475 | 380 | 0.054 | - |
543
+ | 1.3830 | 390 | 0.0495 | - |
544
+ | 1.4184 | 400 | 0.0355 | - |
545
+ | 1.4539 | 410 | 0.0449 | - |
546
+ | 1.4894 | 420 | 0.0509 | - |
547
+ | 1.5248 | 430 | 0.0196 | - |
548
+ | 1.5603 | 440 | 0.0634 | - |
549
+ | 1.5957 | 450 | 0.0522 | - |
550
+ | 1.6312 | 460 | 0.0477 | - |
551
+ | 1.6667 | 470 | 0.0583 | - |
552
+ | 1.7021 | 480 | 0.0584 | - |
553
+ | 1.7376 | 490 | 0.0553 | - |
554
+ | 1.7730 | 500 | 0.0358 | - |
555
+ | 1.8085 | 510 | 0.0253 | - |
556
+ | 1.8440 | 520 | 0.0541 | - |
557
+ | 1.8794 | 530 | 0.0488 | - |
558
+ | 1.9149 | 540 | 0.0528 | - |
559
+ | 1.9504 | 550 | 0.0474 | - |
560
+ | 1.9858 | 560 | 0.0311 | - |
561
+ | 2.0 | 564 | - | 0.6384 |
562
+
563
+ * The bold row denotes the saved checkpoint.
564
+
565
+ ### Framework Versions
566
+ - Python: 3.10.14
567
+ - Sentence Transformers: 3.0.1
568
+ - Transformers: 4.41.2
569
+ - PyTorch: 2.1.2+cu121
570
+ - Accelerate: 0.32.1
571
+ - Datasets: 2.19.1
572
+ - Tokenizers: 0.19.1
573
+
574
+ ## Citation
575
+
576
+ ### BibTeX
577
+
578
+ #### Sentence Transformers
579
+ ```bibtex
580
+ @inproceedings{reimers-2019-sentence-bert,
581
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
582
+ author = "Reimers, Nils and Gurevych, Iryna",
583
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
584
+ month = "11",
585
+ year = "2019",
586
+ publisher = "Association for Computational Linguistics",
587
+ url = "https://arxiv.org/abs/1908.10084",
588
+ }
589
+ ```
590
+
591
+ #### MatryoshkaLoss
592
+ ```bibtex
593
+ @misc{kusupati2024matryoshka,
594
+ title={Matryoshka Representation Learning},
595
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
596
+ year={2024},
597
+ eprint={2205.13147},
598
+ archivePrefix={arXiv},
599
+ primaryClass={cs.LG}
600
+ }
601
+ ```
602
+
603
+ #### MultipleNegativesRankingLoss
604
+ ```bibtex
605
+ @misc{henderson2017efficient,
606
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
607
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
608
+ year={2017},
609
+ eprint={1705.00652},
610
+ archivePrefix={arXiv},
611
+ primaryClass={cs.CL}
612
+ }
613
+ ```
614
+
615
+ <!--
616
+ ## Glossary
617
+
618
+ *Clearly define terms in order to be accessible across audiences.*
619
+ -->
620
+
621
+ <!--
622
+ ## Model Card Authors
623
+
624
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
625
+ -->
626
+
627
+ <!--
628
+ ## Model Card Contact
629
+
630
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
631
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34315dce4304081b7747c237008af4b92bb1f5a1f9b97e7cd8ca0f2b00e78569
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff