WorkInTheDark commited on
Commit
64f070d
1 Parent(s): b577789

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -0
README.md CHANGED
@@ -1,3 +1,91 @@
1
  ---
2
  license: cc-by-nc-4.0
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-4.0
3
+ language:
4
+ - en
5
+ tags:
6
+ - mental
7
+ - mental health
8
+ - large language model
9
+ - alpaca
10
  ---
11
+ # Model Card for mental-alpaca
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+
15
+ This is a fine-tuned large language model for mental health prediction via online text data.
16
+
17
+ ## Model Details
18
+
19
+ ### Model Description
20
+
21
+ <!-- Provide a longer summary of what this model is. -->
22
+
23
+ We fine-tune an Alpaca model with 4 high-quality text (6 tasks in total) datasets for the mental health prediction scenario: Dreaddit, DepSeverity, SDCNL, and CCRS-Suicide.
24
+ We have a separate model, fine-tuned on FLAN-T5-XXL, namely Mental-FLAN-T5, shared [here](https://huggingface.co/NEU-HAI/mental-flan-t5-xxl)
25
+
26
+
27
+ - **Developed by:** Northeastern University Human-Centered AI Lab
28
+ - **Model type:** Sequence-to-sequence Text-generation
29
+ - **Language(s) (NLP):** English
30
+ - **License:** cc-by-nc-4.0
31
+ - **Finetuned from model:** https://github.com/tatsu-lab/stanford_alpaca
32
+
33
+ ### Model Sources [optional]
34
+
35
+ <!-- Provide the basic links for the model. -->
36
+
37
+ - **Repository:** https://github.com/neuhai/Mental-LLM
38
+ - **Paper:** https://arxiv.org/abs/2307.14385
39
+
40
+ ## Uses
41
+
42
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
43
+
44
+ ### Direct Use
45
+
46
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
47
+
48
+ The model is intended to be used for research purposes only in English.
49
+ The model has been fine-tuned for mental health prediction via online text data. Detailed information about the fine-tuning process and prompts can be found in our [paper](https://arxiv.org/abs/2307.14385).
50
+ The use of this model should also comply with the restrictions from [stanford_alpaca project](https://github.com/tatsu-lab/stanford_alpaca) and [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b).
51
+
52
+
53
+
54
+ ### Out-of-Scope Use
55
+
56
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
57
+
58
+ The out-of-scope use of this model should comply with [stanford_alpaca project](https://github.com/tatsu-lab/stanford_alpaca) and [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b).
59
+
60
+
61
+ ## Bias, Risks, and Limitations
62
+
63
+ The Bias, Risks, and Limitations of this model should also comply with [stanford_alpaca project](https://github.com/tatsu-lab/stanford_alpaca) and [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b).
64
+
65
+
66
+ ## How to Get Started with the Model
67
+
68
+ Use the code below to get started with the model.
69
+
70
+ ```
71
+ from transformers import AutoTokenizer, AutoModelForCausalLM
72
+
73
+ tokenizer = AutoTokenizer.from_pretrained("NEU-HAI/Llama-2-7b-alpaca-cleaned")
74
+ model = AutoModelForCausalLM.from_pretrained("NEU-HAI/Llama-2-7b-alpaca-cleaned")
75
+ ```
76
+
77
+ ## Training Details and Evaluation
78
+
79
+
80
+ Detailed information about our work can be found in our [paper](https://arxiv.org/abs/2307.14385).
81
+
82
+ ## Citation
83
+
84
+ ```
85
+ @article{xu2023leveraging,
86
+ title={Leveraging large language models for mental health prediction via online text data},
87
+ author={Xu, Xuhai and Yao, Bingshen and Dong, Yuanzhe and Yu, Hong and Hendler, James and Dey, Anind K and Wang, Dakuo},
88
+ journal={arXiv preprint arXiv:2307.14385},
89
+ year={2023}
90
+ }
91
+ ```