|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
|
|
|
|
class ResBlocks(nn.Module):
|
|
def __init__(self, num_blocks, dim, norm, activation, pad_type):
|
|
super(ResBlocks, self).__init__()
|
|
self.model = []
|
|
for i in range(num_blocks):
|
|
self.model += [ResBlock(dim,
|
|
norm=norm,
|
|
activation=activation,
|
|
pad_type=pad_type)]
|
|
self.model = nn.Sequential(*self.model)
|
|
|
|
def forward(self, x):
|
|
return self.model(x)
|
|
|
|
|
|
class ResBlock(nn.Module):
|
|
def __init__(self, dim, norm='in', activation='relu', pad_type='zero'):
|
|
super(ResBlock, self).__init__()
|
|
model = []
|
|
model += [Conv2dBlock(dim, dim, 3, 1, 1,
|
|
norm=norm,
|
|
activation=activation,
|
|
pad_type=pad_type)]
|
|
model += [Conv2dBlock(dim, dim, 3, 1, 1,
|
|
norm=norm,
|
|
activation='none',
|
|
pad_type=pad_type)]
|
|
self.model = nn.Sequential(*model)
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
out = self.model(x)
|
|
out += residual
|
|
return out
|
|
|
|
|
|
class ActFirstResBlock(nn.Module):
|
|
def __init__(self, fin, fout, fhid=None,
|
|
activation='lrelu', norm='none'):
|
|
super().__init__()
|
|
self.learned_shortcut = (fin != fout)
|
|
self.fin = fin
|
|
self.fout = fout
|
|
self.fhid = min(fin, fout) if fhid is None else fhid
|
|
self.conv_0 = Conv2dBlock(self.fin, self.fhid, 3, 1,
|
|
padding=1, pad_type='reflect', norm=norm,
|
|
activation=activation, activation_first=True)
|
|
self.conv_1 = Conv2dBlock(self.fhid, self.fout, 3, 1,
|
|
padding=1, pad_type='reflect', norm=norm,
|
|
activation=activation, activation_first=True)
|
|
if self.learned_shortcut:
|
|
self.conv_s = Conv2dBlock(self.fin, self.fout, 1, 1,
|
|
activation='none', use_bias=False)
|
|
|
|
def forward(self, x):
|
|
x_s = self.conv_s(x) if self.learned_shortcut else x
|
|
dx = self.conv_0(x)
|
|
dx = self.conv_1(dx)
|
|
out = x_s + dx
|
|
return out
|
|
|
|
|
|
class LinearBlock(nn.Module):
|
|
def __init__(self, in_dim, out_dim, norm='none', activation='relu'):
|
|
super(LinearBlock, self).__init__()
|
|
use_bias = True
|
|
self.fc = nn.Linear(in_dim, out_dim, bias=use_bias)
|
|
|
|
|
|
norm_dim = out_dim
|
|
if norm == 'bn':
|
|
self.norm = nn.BatchNorm1d(norm_dim)
|
|
elif norm == 'in':
|
|
self.norm = nn.InstanceNorm1d(norm_dim)
|
|
elif norm == 'none':
|
|
self.norm = None
|
|
else:
|
|
assert 0, "Unsupported normalization: {}".format(norm)
|
|
|
|
|
|
if activation == 'relu':
|
|
self.activation = nn.ReLU(inplace=False)
|
|
elif activation == 'lrelu':
|
|
self.activation = nn.LeakyReLU(0.2, inplace=False)
|
|
elif activation == 'tanh':
|
|
self.activation = nn.Tanh()
|
|
elif activation == 'none':
|
|
self.activation = None
|
|
else:
|
|
assert 0, "Unsupported activation: {}".format(activation)
|
|
|
|
def forward(self, x):
|
|
out = self.fc(x)
|
|
if self.norm:
|
|
out = self.norm(out)
|
|
if self.activation:
|
|
out = self.activation(out)
|
|
return out
|
|
|
|
|
|
class Conv2dBlock(nn.Module):
|
|
def __init__(self, in_dim, out_dim, ks, st, padding=0,
|
|
norm='none', activation='relu', pad_type='zero',
|
|
use_bias=True, activation_first=False):
|
|
super(Conv2dBlock, self).__init__()
|
|
self.use_bias = use_bias
|
|
self.activation_first = activation_first
|
|
|
|
if pad_type == 'reflect':
|
|
self.pad = nn.ReflectionPad2d(padding)
|
|
elif pad_type == 'replicate':
|
|
self.pad = nn.ReplicationPad2d(padding)
|
|
elif pad_type == 'zero':
|
|
self.pad = nn.ZeroPad2d(padding)
|
|
else:
|
|
assert 0, "Unsupported padding type: {}".format(pad_type)
|
|
|
|
|
|
norm_dim = out_dim
|
|
if norm == 'bn':
|
|
self.norm = nn.BatchNorm2d(norm_dim)
|
|
elif norm == 'in':
|
|
self.norm = nn.InstanceNorm2d(norm_dim)
|
|
elif norm == 'adain':
|
|
self.norm = AdaptiveInstanceNorm2d(norm_dim)
|
|
elif norm == 'none':
|
|
self.norm = None
|
|
else:
|
|
assert 0, "Unsupported normalization: {}".format(norm)
|
|
|
|
|
|
if activation == 'relu':
|
|
self.activation = nn.ReLU(inplace=False)
|
|
elif activation == 'lrelu':
|
|
self.activation = nn.LeakyReLU(0.2, inplace=False)
|
|
elif activation == 'tanh':
|
|
self.activation = nn.Tanh()
|
|
elif activation == 'none':
|
|
self.activation = None
|
|
else:
|
|
assert 0, "Unsupported activation: {}".format(activation)
|
|
|
|
self.conv = nn.Conv2d(in_dim, out_dim, ks, st, bias=self.use_bias)
|
|
|
|
def forward(self, x):
|
|
if self.activation_first:
|
|
if self.activation:
|
|
x = self.activation(x)
|
|
x = self.conv(self.pad(x))
|
|
if self.norm:
|
|
x = self.norm(x)
|
|
else:
|
|
x = self.conv(self.pad(x))
|
|
if self.norm:
|
|
x = self.norm(x)
|
|
if self.activation:
|
|
x = self.activation(x)
|
|
return x
|
|
|
|
|
|
class AdaptiveInstanceNorm2d(nn.Module):
|
|
def __init__(self, num_features, eps=1e-5, momentum=0.1):
|
|
super(AdaptiveInstanceNorm2d, self).__init__()
|
|
self.num_features = num_features
|
|
self.eps = eps
|
|
self.momentum = momentum
|
|
self.weight = None
|
|
self.bias = None
|
|
self.register_buffer('running_mean', torch.zeros(num_features))
|
|
self.register_buffer('running_var', torch.ones(num_features))
|
|
|
|
def forward(self, x):
|
|
assert self.weight is not None and \
|
|
self.bias is not None, "Please assign AdaIN weight first"
|
|
b, c = x.size(0), x.size(1)
|
|
running_mean = self.running_mean.repeat(b)
|
|
running_var = self.running_var.repeat(b)
|
|
x_reshaped = x.contiguous().view(1, b * c, *x.size()[2:])
|
|
out = F.batch_norm(
|
|
x_reshaped, running_mean, running_var, self.weight, self.bias,
|
|
True, self.momentum, self.eps)
|
|
return out.view(b, c, *x.size()[2:])
|
|
|
|
def __repr__(self):
|
|
return self.__class__.__name__ + '(' + str(self.num_features) + ')'
|
|
|