|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from torchvision import models
|
|
import numpy as np
|
|
|
|
from itertools import cycle
|
|
from scipy import linalg
|
|
|
|
|
|
try:
|
|
from torchvision.models.utils import load_state_dict_from_url
|
|
except ImportError:
|
|
from torch.utils.model_zoo import load_url as load_state_dict_from_url
|
|
|
|
|
|
|
|
FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth'
|
|
|
|
|
|
class InceptionV3(nn.Module):
|
|
"""Pretrained InceptionV3 network returning feature maps"""
|
|
|
|
|
|
|
|
DEFAULT_BLOCK_INDEX = 3
|
|
|
|
|
|
BLOCK_INDEX_BY_DIM = {
|
|
64: 0,
|
|
192: 1,
|
|
768: 2,
|
|
2048: 3
|
|
}
|
|
|
|
def __init__(self,
|
|
output_blocks=[DEFAULT_BLOCK_INDEX],
|
|
resize_input=True,
|
|
normalize_input=True,
|
|
requires_grad=False,
|
|
use_fid_inception=True):
|
|
"""Build pretrained InceptionV3
|
|
Parameters
|
|
----------
|
|
output_blocks : list of int
|
|
Indices of blocks to return features of. Possible values are:
|
|
- 0: corresponds to output of first max pooling
|
|
- 1: corresponds to output of second max pooling
|
|
- 2: corresponds to output which is fed to aux classifier
|
|
- 3: corresponds to output of final average pooling
|
|
resize_input : bool
|
|
If true, bilinearly resizes input to width and height 299 before
|
|
feeding input to model. As the network without fully connected
|
|
layers is fully convolutional, it should be able to handle inputs
|
|
of arbitrary size, so resizing might not be strictly needed
|
|
normalize_input : bool
|
|
If true, scales the input from range (0, 1) to the range the
|
|
pretrained Inception network expects, namely (-1, 1)
|
|
requires_grad : bool
|
|
If true, parameters of the model require gradients. Possibly useful
|
|
for finetuning the network
|
|
use_fid_inception : bool
|
|
If true, uses the pretrained Inception model used in Tensorflow's
|
|
FID implementation. If false, uses the pretrained Inception model
|
|
available in torchvision. The FID Inception model has different
|
|
weights and a slightly different structure from torchvision's
|
|
Inception model. If you want to compute FID scores, you are
|
|
strongly advised to set this parameter to true to get comparable
|
|
results.
|
|
"""
|
|
super(InceptionV3, self).__init__()
|
|
|
|
self.resize_input = resize_input
|
|
self.normalize_input = normalize_input
|
|
self.output_blocks = sorted(output_blocks)
|
|
self.last_needed_block = max(output_blocks)
|
|
|
|
assert self.last_needed_block <= 3, \
|
|
'Last possible output block index is 3'
|
|
|
|
self.blocks = nn.ModuleList()
|
|
|
|
if use_fid_inception:
|
|
inception = fid_inception_v3()
|
|
else:
|
|
inception = models.inception_v3(pretrained=True)
|
|
|
|
|
|
block0 = [
|
|
inception.Conv2d_1a_3x3,
|
|
inception.Conv2d_2a_3x3,
|
|
inception.Conv2d_2b_3x3,
|
|
nn.MaxPool2d(kernel_size=3, stride=2)
|
|
]
|
|
self.blocks.append(nn.Sequential(*block0))
|
|
|
|
|
|
if self.last_needed_block >= 1:
|
|
block1 = [
|
|
inception.Conv2d_3b_1x1,
|
|
inception.Conv2d_4a_3x3,
|
|
nn.MaxPool2d(kernel_size=3, stride=2)
|
|
]
|
|
self.blocks.append(nn.Sequential(*block1))
|
|
|
|
|
|
if self.last_needed_block >= 2:
|
|
block2 = [
|
|
inception.Mixed_5b,
|
|
inception.Mixed_5c,
|
|
inception.Mixed_5d,
|
|
inception.Mixed_6a,
|
|
inception.Mixed_6b,
|
|
inception.Mixed_6c,
|
|
inception.Mixed_6d,
|
|
inception.Mixed_6e,
|
|
]
|
|
self.blocks.append(nn.Sequential(*block2))
|
|
|
|
|
|
if self.last_needed_block >= 3:
|
|
block3 = [
|
|
inception.Mixed_7a,
|
|
inception.Mixed_7b,
|
|
inception.Mixed_7c,
|
|
nn.AdaptiveAvgPool2d(output_size=(1, 1))
|
|
]
|
|
self.blocks.append(nn.Sequential(*block3))
|
|
|
|
for param in self.parameters():
|
|
param.requires_grad = requires_grad
|
|
|
|
def forward(self, inp):
|
|
"""Get Inception feature maps
|
|
Parameters
|
|
----------
|
|
inp : torch.autograd.Variable
|
|
Input tensor of shape Bx3xHxW. Values are expected to be in
|
|
range (0, 1)
|
|
Returns
|
|
-------
|
|
List of torch.autograd.Variable, corresponding to the selected output
|
|
block, sorted ascending by index
|
|
"""
|
|
outp = []
|
|
x = inp
|
|
|
|
if self.resize_input:
|
|
x = F.interpolate(x,
|
|
size=(299, 299),
|
|
mode='bilinear',
|
|
align_corners=False)
|
|
|
|
if self.normalize_input:
|
|
x = 2 * x - 1
|
|
|
|
for idx, block in enumerate(self.blocks):
|
|
x = block(x)
|
|
if idx in self.output_blocks:
|
|
outp.append(x)
|
|
|
|
if idx == self.last_needed_block:
|
|
break
|
|
|
|
return outp
|
|
|
|
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
|
|
"""Numpy implementation of the Frechet Distance.
|
|
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
|
|
and X_2 ~ N(mu_2, C_2) is
|
|
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
|
|
Stable version by Dougal J. Sutherland.
|
|
Params:
|
|
-- mu1 : Numpy array containing the activations of a layer of the
|
|
inception net (like returned by the function 'get_predictions')
|
|
for generated samples.
|
|
-- mu2 : The sample mean over activations, precalculated on an
|
|
representative data set.
|
|
-- sigma1: The covariance matrix over activations for generated samples.
|
|
-- sigma2: The covariance matrix over activations, precalculated on an
|
|
representative data set.
|
|
Returns:
|
|
-- : The Frechet Distance.
|
|
"""
|
|
|
|
mu1 = np.atleast_1d(mu1)
|
|
mu2 = np.atleast_1d(mu2)
|
|
|
|
sigma1 = np.atleast_2d(sigma1)
|
|
sigma2 = np.atleast_2d(sigma2)
|
|
|
|
assert mu1.shape == mu2.shape, \
|
|
'Training and test mean vectors have different lengths'
|
|
assert sigma1.shape == sigma2.shape, \
|
|
'Training and test covariances have different dimensions'
|
|
|
|
diff = mu1 - mu2
|
|
|
|
|
|
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
|
|
if not np.isfinite(covmean).all():
|
|
msg = ('fid calculation produces singular product; '
|
|
'adding %s to diagonal of cov estimates') % eps
|
|
print(msg)
|
|
offset = np.eye(sigma1.shape[0]) * eps
|
|
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
|
|
|
|
|
|
if np.iscomplexobj(covmean):
|
|
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
|
|
m = np.max(np.abs(covmean.imag))
|
|
raise ValueError('Imaginary component {}'.format(m))
|
|
covmean = covmean.real
|
|
|
|
tr_covmean = np.trace(covmean)
|
|
|
|
return (diff.dot(diff) + np.trace(sigma1) +
|
|
np.trace(sigma2) - 2 * tr_covmean)
|
|
|
|
|
|
def fid_inception_v3():
|
|
"""Build pretrained Inception model for FID computation
|
|
The Inception model for FID computation uses a different set of weights
|
|
and has a slightly different structure than torchvision's Inception.
|
|
This method first constructs torchvision's Inception and then patches the
|
|
necessary parts that are different in the FID Inception model.
|
|
"""
|
|
inception = models.inception_v3(num_classes=1008,
|
|
aux_logits=False,
|
|
pretrained=False)
|
|
inception.Mixed_5b = FIDInceptionA(192, pool_features=32)
|
|
inception.Mixed_5c = FIDInceptionA(256, pool_features=64)
|
|
inception.Mixed_5d = FIDInceptionA(288, pool_features=64)
|
|
inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128)
|
|
inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160)
|
|
inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160)
|
|
inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192)
|
|
inception.Mixed_7b = FIDInceptionE_1(1280)
|
|
inception.Mixed_7c = FIDInceptionE_2(2048)
|
|
|
|
state_dict = load_state_dict_from_url(FID_WEIGHTS_URL, progress=True)
|
|
inception.load_state_dict(state_dict)
|
|
return inception
|
|
|
|
|
|
class FIDInceptionA(models.inception.InceptionA):
|
|
"""InceptionA block patched for FID computation"""
|
|
def __init__(self, in_channels, pool_features):
|
|
super(FIDInceptionA, self).__init__(in_channels, pool_features)
|
|
|
|
def forward(self, x):
|
|
branch1x1 = self.branch1x1(x)
|
|
|
|
branch5x5 = self.branch5x5_1(x)
|
|
branch5x5 = self.branch5x5_2(branch5x5)
|
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x)
|
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
|
|
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl)
|
|
|
|
|
|
|
|
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
|
|
count_include_pad=False)
|
|
branch_pool = self.branch_pool(branch_pool)
|
|
|
|
outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool]
|
|
return torch.cat(outputs, 1)
|
|
|
|
|
|
class FIDInceptionC(models.inception.InceptionC):
|
|
"""InceptionC block patched for FID computation"""
|
|
def __init__(self, in_channels, channels_7x7):
|
|
super(FIDInceptionC, self).__init__(in_channels, channels_7x7)
|
|
|
|
def forward(self, x):
|
|
branch1x1 = self.branch1x1(x)
|
|
|
|
branch7x7 = self.branch7x7_1(x)
|
|
branch7x7 = self.branch7x7_2(branch7x7)
|
|
branch7x7 = self.branch7x7_3(branch7x7)
|
|
|
|
branch7x7dbl = self.branch7x7dbl_1(x)
|
|
branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl)
|
|
branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl)
|
|
branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl)
|
|
branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl)
|
|
|
|
|
|
|
|
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
|
|
count_include_pad=False)
|
|
branch_pool = self.branch_pool(branch_pool)
|
|
|
|
outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool]
|
|
return torch.cat(outputs, 1)
|
|
|
|
|
|
class FIDInceptionE_1(models.inception.InceptionE):
|
|
"""First InceptionE block patched for FID computation"""
|
|
def __init__(self, in_channels):
|
|
super(FIDInceptionE_1, self).__init__(in_channels)
|
|
|
|
def forward(self, x):
|
|
branch1x1 = self.branch1x1(x)
|
|
|
|
branch3x3 = self.branch3x3_1(x)
|
|
branch3x3 = [
|
|
self.branch3x3_2a(branch3x3),
|
|
self.branch3x3_2b(branch3x3),
|
|
]
|
|
branch3x3 = torch.cat(branch3x3, 1)
|
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x)
|
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
|
|
branch3x3dbl = [
|
|
self.branch3x3dbl_3a(branch3x3dbl),
|
|
self.branch3x3dbl_3b(branch3x3dbl),
|
|
]
|
|
branch3x3dbl = torch.cat(branch3x3dbl, 1)
|
|
|
|
|
|
|
|
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1,
|
|
count_include_pad=False)
|
|
branch_pool = self.branch_pool(branch_pool)
|
|
|
|
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
|
|
return torch.cat(outputs, 1)
|
|
|
|
|
|
class FIDInceptionE_2(models.inception.InceptionE):
|
|
"""Second InceptionE block patched for FID computation"""
|
|
def __init__(self, in_channels):
|
|
super(FIDInceptionE_2, self).__init__(in_channels)
|
|
|
|
def forward(self, x):
|
|
branch1x1 = self.branch1x1(x)
|
|
|
|
branch3x3 = self.branch3x3_1(x)
|
|
branch3x3 = [
|
|
self.branch3x3_2a(branch3x3),
|
|
self.branch3x3_2b(branch3x3),
|
|
]
|
|
branch3x3 = torch.cat(branch3x3, 1)
|
|
|
|
branch3x3dbl = self.branch3x3dbl_1(x)
|
|
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl)
|
|
branch3x3dbl = [
|
|
self.branch3x3dbl_3a(branch3x3dbl),
|
|
self.branch3x3dbl_3b(branch3x3dbl),
|
|
]
|
|
branch3x3dbl = torch.cat(branch3x3dbl, 1)
|
|
|
|
|
|
|
|
|
|
|
|
branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1)
|
|
branch_pool = self.branch_pool(branch_pool)
|
|
|
|
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool]
|
|
return torch.cat(outputs, 1) |