|
|
|
"""
|
|
DETR Transformer class.
|
|
|
|
Copy-paste from torch.nn.Transformer with modifications:
|
|
* positional encodings are passed in MHattention
|
|
* extra LN at the end of encoder is removed
|
|
* decoder returns a stack of activations from all decoding layers
|
|
"""
|
|
import copy
|
|
from typing import Optional, List
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn, Tensor
|
|
|
|
|
|
class Transformer(nn.Module):
|
|
|
|
def __init__(self, d_model=512, nhead=8, num_encoder_layers=6,
|
|
num_decoder_layers=6, dim_feedforward=2048, dropout=0.1,
|
|
activation="relu", normalize_before=False,
|
|
return_intermediate_dec=False):
|
|
super().__init__()
|
|
|
|
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward,
|
|
dropout, activation, normalize_before)
|
|
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
|
|
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
|
|
|
|
decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward,
|
|
dropout, activation, normalize_before)
|
|
decoder_norm = nn.LayerNorm(d_model)
|
|
self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm,
|
|
return_intermediate=return_intermediate_dec)
|
|
|
|
self._reset_parameters()
|
|
|
|
self.d_model = d_model
|
|
self.nhead = nhead
|
|
|
|
def _reset_parameters(self):
|
|
for p in self.parameters():
|
|
if p.dim() > 1:
|
|
nn.init.xavier_uniform_(p)
|
|
|
|
def forward(self, src, query_embed, y_ind):
|
|
|
|
bs, c, h, w = src.shape
|
|
src = src.flatten(2).permute(2, 0, 1)
|
|
|
|
y_emb = query_embed[y_ind].permute(1,0,2)
|
|
|
|
tgt = torch.zeros_like(y_emb)
|
|
memory = self.encoder(src)
|
|
hs = self.decoder(tgt, memory, query_pos=y_emb)
|
|
|
|
return torch.cat([hs.transpose(1, 2)[-1], y_emb.permute(1,0,2)], -1)
|
|
|
|
|
|
class TransformerEncoder(nn.Module):
|
|
|
|
def __init__(self, encoder_layer, num_layers, norm=None):
|
|
super().__init__()
|
|
self.layers = _get_clones(encoder_layer, num_layers)
|
|
self.num_layers = num_layers
|
|
self.norm = norm
|
|
|
|
def forward(self, src,
|
|
mask: Optional[Tensor] = None,
|
|
src_key_padding_mask: Optional[Tensor] = None,
|
|
pos: Optional[Tensor] = None):
|
|
output = src
|
|
|
|
for layer in self.layers:
|
|
output = layer(output, src_mask=mask,
|
|
src_key_padding_mask=src_key_padding_mask, pos=pos)
|
|
|
|
if self.norm is not None:
|
|
output = self.norm(output)
|
|
|
|
return output
|
|
|
|
|
|
class TransformerDecoder(nn.Module):
|
|
|
|
def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False):
|
|
super().__init__()
|
|
self.layers = _get_clones(decoder_layer, num_layers)
|
|
self.num_layers = num_layers
|
|
self.norm = norm
|
|
self.return_intermediate = return_intermediate
|
|
|
|
def forward(self, tgt, memory,
|
|
tgt_mask: Optional[Tensor] = None,
|
|
memory_mask: Optional[Tensor] = None,
|
|
tgt_key_padding_mask: Optional[Tensor] = None,
|
|
memory_key_padding_mask: Optional[Tensor] = None,
|
|
pos: Optional[Tensor] = None,
|
|
query_pos: Optional[Tensor] = None):
|
|
output = tgt
|
|
|
|
intermediate = []
|
|
|
|
for layer in self.layers:
|
|
output = layer(output, memory, tgt_mask=tgt_mask,
|
|
memory_mask=memory_mask,
|
|
tgt_key_padding_mask=tgt_key_padding_mask,
|
|
memory_key_padding_mask=memory_key_padding_mask,
|
|
pos=pos, query_pos=query_pos)
|
|
if self.return_intermediate:
|
|
intermediate.append(self.norm(output))
|
|
|
|
if self.norm is not None:
|
|
output = self.norm(output)
|
|
if self.return_intermediate:
|
|
intermediate.pop()
|
|
intermediate.append(output)
|
|
|
|
if self.return_intermediate:
|
|
return torch.stack(intermediate)
|
|
|
|
return output.unsqueeze(0)
|
|
|
|
|
|
class TransformerEncoderLayer(nn.Module):
|
|
|
|
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
|
|
activation="relu", normalize_before=False):
|
|
super().__init__()
|
|
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
|
|
|
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
|
self.dropout = nn.Dropout(dropout)
|
|
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
|
|
|
self.norm1 = nn.LayerNorm(d_model)
|
|
self.norm2 = nn.LayerNorm(d_model)
|
|
self.dropout1 = nn.Dropout(dropout)
|
|
self.dropout2 = nn.Dropout(dropout)
|
|
|
|
self.activation = _get_activation_fn(activation)
|
|
self.normalize_before = normalize_before
|
|
|
|
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
|
return tensor if pos is None else tensor + pos
|
|
|
|
def forward_post(self,
|
|
src,
|
|
src_mask: Optional[Tensor] = None,
|
|
src_key_padding_mask: Optional[Tensor] = None,
|
|
pos: Optional[Tensor] = None):
|
|
q = k = self.with_pos_embed(src, pos)
|
|
src2 = self.self_attn(q, k, value=src, attn_mask=src_mask,
|
|
key_padding_mask=src_key_padding_mask)[0]
|
|
src = src + self.dropout1(src2)
|
|
src = self.norm1(src)
|
|
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
|
|
src = src + self.dropout2(src2)
|
|
src = self.norm2(src)
|
|
return src
|
|
|
|
def forward_pre(self, src,
|
|
src_mask: Optional[Tensor] = None,
|
|
src_key_padding_mask: Optional[Tensor] = None,
|
|
pos: Optional[Tensor] = None):
|
|
src2 = self.norm1(src)
|
|
q = k = self.with_pos_embed(src2, pos)
|
|
src2 = self.self_attn(q, k, value=src2, attn_mask=src_mask,
|
|
key_padding_mask=src_key_padding_mask)[0]
|
|
src = src + self.dropout1(src2)
|
|
src2 = self.norm2(src)
|
|
src2 = self.linear2(self.dropout(self.activation(self.linear1(src2))))
|
|
src = src + self.dropout2(src2)
|
|
return src
|
|
|
|
def forward(self, src,
|
|
src_mask: Optional[Tensor] = None,
|
|
src_key_padding_mask: Optional[Tensor] = None,
|
|
pos: Optional[Tensor] = None):
|
|
if self.normalize_before:
|
|
return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
|
|
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
|
|
|
|
|
|
class TransformerDecoderLayer(nn.Module):
|
|
|
|
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
|
|
activation="relu", normalize_before=False):
|
|
super().__init__()
|
|
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
|
self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
|
|
|
|
self.linear1 = nn.Linear(d_model, dim_feedforward)
|
|
self.dropout = nn.Dropout(dropout)
|
|
self.linear2 = nn.Linear(dim_feedforward, d_model)
|
|
|
|
self.norm1 = nn.LayerNorm(d_model)
|
|
self.norm2 = nn.LayerNorm(d_model)
|
|
self.norm3 = nn.LayerNorm(d_model)
|
|
self.dropout1 = nn.Dropout(dropout)
|
|
self.dropout2 = nn.Dropout(dropout)
|
|
self.dropout3 = nn.Dropout(dropout)
|
|
|
|
self.activation = _get_activation_fn(activation)
|
|
self.normalize_before = normalize_before
|
|
|
|
def with_pos_embed(self, tensor, pos: Optional[Tensor]):
|
|
return tensor if pos is None else tensor + pos
|
|
|
|
def forward_post(self, tgt, memory,
|
|
tgt_mask: Optional[Tensor] = None,
|
|
memory_mask: Optional[Tensor] = None,
|
|
tgt_key_padding_mask: Optional[Tensor] = None,
|
|
memory_key_padding_mask: Optional[Tensor] = None,
|
|
pos: Optional[Tensor] = None,
|
|
query_pos: Optional[Tensor] = None):
|
|
q = k = self.with_pos_embed(tgt, query_pos)
|
|
tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
|
|
key_padding_mask=tgt_key_padding_mask)[0]
|
|
tgt = tgt + self.dropout1(tgt2)
|
|
tgt = self.norm1(tgt)
|
|
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
|
|
key=self.with_pos_embed(memory, pos),
|
|
value=memory, attn_mask=memory_mask,
|
|
key_padding_mask=memory_key_padding_mask)[0]
|
|
tgt = tgt + self.dropout2(tgt2)
|
|
tgt = self.norm2(tgt)
|
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
|
|
tgt = tgt + self.dropout3(tgt2)
|
|
tgt = self.norm3(tgt)
|
|
return tgt
|
|
|
|
def forward_pre(self, tgt, memory,
|
|
tgt_mask: Optional[Tensor] = None,
|
|
memory_mask: Optional[Tensor] = None,
|
|
tgt_key_padding_mask: Optional[Tensor] = None,
|
|
memory_key_padding_mask: Optional[Tensor] = None,
|
|
pos: Optional[Tensor] = None,
|
|
query_pos: Optional[Tensor] = None):
|
|
tgt2 = self.norm1(tgt)
|
|
q = k = self.with_pos_embed(tgt2, query_pos)
|
|
tgt2 = self.self_attn(q, k, value=tgt2, attn_mask=tgt_mask,
|
|
key_padding_mask=tgt_key_padding_mask)[0]
|
|
tgt = tgt + self.dropout1(tgt2)
|
|
tgt2 = self.norm2(tgt)
|
|
tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt2, query_pos),
|
|
key=self.with_pos_embed(memory, pos),
|
|
value=memory, attn_mask=memory_mask,
|
|
key_padding_mask=memory_key_padding_mask)[0]
|
|
tgt = tgt + self.dropout2(tgt2)
|
|
tgt2 = self.norm3(tgt)
|
|
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
|
|
tgt = tgt + self.dropout3(tgt2)
|
|
return tgt
|
|
|
|
def forward(self, tgt, memory,
|
|
tgt_mask: Optional[Tensor] = None,
|
|
memory_mask: Optional[Tensor] = None,
|
|
tgt_key_padding_mask: Optional[Tensor] = None,
|
|
memory_key_padding_mask: Optional[Tensor] = None,
|
|
pos: Optional[Tensor] = None,
|
|
query_pos: Optional[Tensor] = None):
|
|
if self.normalize_before:
|
|
return self.forward_pre(tgt, memory, tgt_mask, memory_mask,
|
|
tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos)
|
|
return self.forward_post(tgt, memory, tgt_mask, memory_mask,
|
|
tgt_key_padding_mask, memory_key_padding_mask, pos, query_pos)
|
|
|
|
|
|
def _get_clones(module, N):
|
|
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
|
|
|
|
|
def build_transformer(args):
|
|
return Transformer(
|
|
d_model=args.hidden_dim,
|
|
dropout=args.dropout,
|
|
nhead=args.nheads,
|
|
dim_feedforward=args.dim_feedforward,
|
|
num_encoder_layers=args.enc_layers,
|
|
num_decoder_layers=args.dec_layers,
|
|
normalize_before=args.pre_norm,
|
|
return_intermediate_dec=True,
|
|
)
|
|
|
|
|
|
def _get_activation_fn(activation):
|
|
"""Return an activation function given a string"""
|
|
if activation == "relu":
|
|
return F.relu
|
|
if activation == "gelu":
|
|
return F.gelu
|
|
if activation == "glu":
|
|
return F.glu
|
|
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
|
|
|