|
import argparse
|
|
from collections import namedtuple
|
|
import numpy as np
|
|
import torch
|
|
import cv2,os
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from collections import defaultdict
|
|
from sklearn.cluster import DBSCAN
|
|
|
|
"""
|
|
taken from https://github.com/githubharald/WordDetectorNN
|
|
Download the models from https://www.dropbox.com/s/mqhco2q67ovpfjq/model.zip?dl=1 and pass the path to word_segment(.) as argument.
|
|
"""
|
|
|
|
from typing import Type, Any, Callable, Union, List, Optional
|
|
|
|
import torch.nn as nn
|
|
from torch import Tensor
|
|
|
|
|
|
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
|
|
"""3x3 convolution with padding"""
|
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
|
padding=dilation, groups=groups, bias=False, dilation=dilation)
|
|
|
|
|
|
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
|
|
"""1x1 convolution"""
|
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
|
|
|
|
|
class BasicBlock(nn.Module):
|
|
expansion: int = 1
|
|
|
|
def __init__(
|
|
self,
|
|
inplanes: int,
|
|
planes: int,
|
|
stride: int = 1,
|
|
downsample: Optional[nn.Module] = None,
|
|
groups: int = 1,
|
|
base_width: int = 64,
|
|
dilation: int = 1,
|
|
norm_layer: Optional[Callable[..., nn.Module]] = None
|
|
) -> None:
|
|
super(BasicBlock, self).__init__()
|
|
if norm_layer is None:
|
|
norm_layer = nn.BatchNorm2d
|
|
if groups != 1 or base_width != 64:
|
|
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
|
|
if dilation > 1:
|
|
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
|
|
|
|
self.conv1 = conv3x3(inplanes, planes, stride)
|
|
self.bn1 = norm_layer(planes)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.conv2 = conv3x3(planes, planes)
|
|
self.bn2 = norm_layer(planes)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
identity = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
|
|
if self.downsample is not None:
|
|
identity = self.downsample(x)
|
|
|
|
out += identity
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class Bottleneck(nn.Module):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
expansion: int = 4
|
|
|
|
def __init__(
|
|
self,
|
|
inplanes: int,
|
|
planes: int,
|
|
stride: int = 1,
|
|
downsample: Optional[nn.Module] = None,
|
|
groups: int = 1,
|
|
base_width: int = 64,
|
|
dilation: int = 1,
|
|
norm_layer: Optional[Callable[..., nn.Module]] = None
|
|
) -> None:
|
|
super(Bottleneck, self).__init__()
|
|
if norm_layer is None:
|
|
norm_layer = nn.BatchNorm2d
|
|
width = int(planes * (base_width / 64.)) * groups
|
|
|
|
self.conv1 = conv1x1(inplanes, width)
|
|
self.bn1 = norm_layer(width)
|
|
self.conv2 = conv3x3(width, width, stride, groups, dilation)
|
|
self.bn2 = norm_layer(width)
|
|
self.conv3 = conv1x1(width, planes * self.expansion)
|
|
self.bn3 = norm_layer(planes * self.expansion)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.downsample = downsample
|
|
self.stride = stride
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
identity = x
|
|
|
|
out = self.conv1(x)
|
|
out = self.bn1(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv2(out)
|
|
out = self.bn2(out)
|
|
out = self.relu(out)
|
|
|
|
out = self.conv3(out)
|
|
out = self.bn3(out)
|
|
|
|
if self.downsample is not None:
|
|
identity = self.downsample(x)
|
|
|
|
out += identity
|
|
out = self.relu(out)
|
|
|
|
return out
|
|
|
|
|
|
class ResNet(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
block: Type[Union[BasicBlock, Bottleneck]],
|
|
layers: List[int],
|
|
num_classes: int = 1000,
|
|
zero_init_residual: bool = False,
|
|
groups: int = 1,
|
|
width_per_group: int = 64,
|
|
replace_stride_with_dilation: Optional[List[bool]] = None,
|
|
norm_layer: Optional[Callable[..., nn.Module]] = None
|
|
) -> None:
|
|
super(ResNet, self).__init__()
|
|
if norm_layer is None:
|
|
norm_layer = nn.BatchNorm2d
|
|
self._norm_layer = norm_layer
|
|
|
|
self.inplanes = 64
|
|
self.dilation = 1
|
|
if replace_stride_with_dilation is None:
|
|
|
|
|
|
replace_stride_with_dilation = [False, False, False]
|
|
if len(replace_stride_with_dilation) != 3:
|
|
raise ValueError("replace_stride_with_dilation should be None "
|
|
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
|
|
self.groups = groups
|
|
self.base_width = width_per_group
|
|
self.conv1 = nn.Conv2d(1, self.inplanes, kernel_size=7, stride=2, padding=3,
|
|
bias=False)
|
|
self.bn1 = norm_layer(self.inplanes)
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
|
self.layer1 = self._make_layer(block, 64, layers[0])
|
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
|
|
dilate=replace_stride_with_dilation[0])
|
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
|
|
dilate=replace_stride_with_dilation[1])
|
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
|
|
dilate=replace_stride_with_dilation[2])
|
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
|
self.fc = nn.Linear(512 * block.expansion, num_classes)
|
|
|
|
for m in self.modules():
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
|
nn.init.constant_(m.weight, 1)
|
|
nn.init.constant_(m.bias, 0)
|
|
|
|
|
|
|
|
|
|
if zero_init_residual:
|
|
for m in self.modules():
|
|
if isinstance(m, Bottleneck):
|
|
nn.init.constant_(m.bn3.weight, 0)
|
|
elif isinstance(m, BasicBlock):
|
|
nn.init.constant_(m.bn2.weight, 0)
|
|
|
|
def _make_layer(self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int,
|
|
stride: int = 1, dilate: bool = False) -> nn.Sequential:
|
|
norm_layer = self._norm_layer
|
|
downsample = None
|
|
previous_dilation = self.dilation
|
|
if dilate:
|
|
self.dilation *= stride
|
|
stride = 1
|
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
|
downsample = nn.Sequential(
|
|
conv1x1(self.inplanes, planes * block.expansion, stride),
|
|
norm_layer(planes * block.expansion),
|
|
)
|
|
|
|
layers = []
|
|
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
|
|
self.base_width, previous_dilation, norm_layer))
|
|
self.inplanes = planes * block.expansion
|
|
for _ in range(1, blocks):
|
|
layers.append(block(self.inplanes, planes, groups=self.groups,
|
|
base_width=self.base_width, dilation=self.dilation,
|
|
norm_layer=norm_layer))
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
def _forward_impl(self, x: Tensor) -> Tensor:
|
|
|
|
x = self.conv1(x)
|
|
x = self.bn1(x)
|
|
out1 = self.relu(x)
|
|
x = self.maxpool(out1)
|
|
|
|
out2 = self.layer1(x)
|
|
out3 = self.layer2(out2)
|
|
out4 = self.layer3(out3)
|
|
out5 = self.layer4(out4)
|
|
|
|
return out5, out4, out3, out2, out1
|
|
|
|
def forward(self, x: Tensor) -> Tensor:
|
|
return self._forward_impl(x)
|
|
|
|
|
|
def _resnet(
|
|
arch: str,
|
|
block: Type[Union[BasicBlock, Bottleneck]],
|
|
layers: List[int],
|
|
pretrained: bool,
|
|
progress: bool,
|
|
**kwargs: Any
|
|
) -> ResNet:
|
|
model = ResNet(block, layers, **kwargs)
|
|
return model
|
|
|
|
|
|
def resnet18(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
|
|
r"""ResNet-18 model from
|
|
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
|
|
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
progress (bool): If True, displays a progress bar of the download to stderr
|
|
"""
|
|
return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,
|
|
**kwargs)
|
|
|
|
|
|
def resnet34(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
|
|
r"""ResNet-34 model from
|
|
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
|
|
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
progress (bool): If True, displays a progress bar of the download to stderr
|
|
"""
|
|
return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,
|
|
**kwargs)
|
|
|
|
|
|
def resnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
|
|
r"""ResNet-50 model from
|
|
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
|
|
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
progress (bool): If True, displays a progress bar of the download to stderr
|
|
"""
|
|
return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,
|
|
**kwargs)
|
|
|
|
|
|
def resnet101(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
|
|
r"""ResNet-101 model from
|
|
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
|
|
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
progress (bool): If True, displays a progress bar of the download to stderr
|
|
"""
|
|
return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress,
|
|
**kwargs)
|
|
|
|
|
|
def resnet152(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
|
|
r"""ResNet-152 model from
|
|
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
|
|
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
progress (bool): If True, displays a progress bar of the download to stderr
|
|
"""
|
|
return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress,
|
|
**kwargs)
|
|
|
|
|
|
def resnext50_32x4d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
|
|
r"""ResNeXt-50 32x4d model from
|
|
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
|
|
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
progress (bool): If True, displays a progress bar of the download to stderr
|
|
"""
|
|
kwargs['groups'] = 32
|
|
kwargs['width_per_group'] = 4
|
|
return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3],
|
|
pretrained, progress, **kwargs)
|
|
|
|
|
|
def resnext101_32x8d(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
|
|
r"""ResNeXt-101 32x8d model from
|
|
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
|
|
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
progress (bool): If True, displays a progress bar of the download to stderr
|
|
"""
|
|
kwargs['groups'] = 32
|
|
kwargs['width_per_group'] = 8
|
|
return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3],
|
|
pretrained, progress, **kwargs)
|
|
|
|
|
|
def wide_resnet50_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
|
|
r"""Wide ResNet-50-2 model from
|
|
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
|
|
|
|
The model is the same as ResNet except for the bottleneck number of channels
|
|
which is twice larger in every block. The number of channels in outer 1x1
|
|
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
|
|
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
|
|
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
progress (bool): If True, displays a progress bar of the download to stderr
|
|
"""
|
|
kwargs['width_per_group'] = 64 * 2
|
|
return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3],
|
|
pretrained, progress, **kwargs)
|
|
|
|
|
|
def wide_resnet101_2(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
|
|
r"""Wide ResNet-101-2 model from
|
|
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
|
|
|
|
The model is the same as ResNet except for the bottleneck number of channels
|
|
which is twice larger in every block. The number of channels in outer 1x1
|
|
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
|
|
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
|
|
|
|
Args:
|
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
|
progress (bool): If True, displays a progress bar of the download to stderr
|
|
"""
|
|
kwargs['width_per_group'] = 64 * 2
|
|
return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3],
|
|
pretrained, progress, **kwargs)
|
|
|
|
def compute_iou(ra, rb):
|
|
"""intersection over union of two axis aligned rectangles ra and rb"""
|
|
if ra.xmax < rb.xmin or rb.xmax < ra.xmin or ra.ymax < rb.ymin or rb.ymax < ra.ymin:
|
|
return 0
|
|
|
|
l = max(ra.xmin, rb.xmin)
|
|
r = min(ra.xmax, rb.xmax)
|
|
t = max(ra.ymin, rb.ymin)
|
|
b = min(ra.ymax, rb.ymax)
|
|
|
|
intersection = (r - l) * (b - t)
|
|
union = ra.area() + rb.area() - intersection
|
|
|
|
iou = intersection / union
|
|
return iou
|
|
|
|
def compute_dist_mat(aabbs):
|
|
"""Jaccard distance matrix of all pairs of aabbs"""
|
|
num_aabbs = len(aabbs)
|
|
|
|
dists = np.zeros((num_aabbs, num_aabbs))
|
|
for i in range(num_aabbs):
|
|
for j in range(num_aabbs):
|
|
if j > i:
|
|
break
|
|
|
|
dists[i, j] = dists[j, i] = 1 - compute_iou(aabbs[i], aabbs[j])
|
|
|
|
return dists
|
|
|
|
|
|
def cluster_aabbs(aabbs):
|
|
"""cluster aabbs using DBSCAN and the Jaccard distance between bounding boxes"""
|
|
if len(aabbs) < 2:
|
|
return aabbs
|
|
|
|
dists = compute_dist_mat(aabbs)
|
|
clustering = DBSCAN(eps=0.7, min_samples=3, metric='precomputed').fit(dists)
|
|
|
|
clusters = defaultdict(list)
|
|
for i, c in enumerate(clustering.labels_):
|
|
if c == -1:
|
|
continue
|
|
clusters[c].append(aabbs[i])
|
|
|
|
res_aabbs = []
|
|
for curr_cluster in clusters.values():
|
|
xmin = np.median([aabb.xmin for aabb in curr_cluster])
|
|
xmax = np.median([aabb.xmax for aabb in curr_cluster])
|
|
ymin = np.median([aabb.ymin for aabb in curr_cluster])
|
|
ymax = np.median([aabb.ymax for aabb in curr_cluster])
|
|
res_aabbs.append(AABB(xmin, xmax, ymin, ymax))
|
|
|
|
return res_aabbs
|
|
|
|
|
|
class AABB:
|
|
"""axis aligned bounding box"""
|
|
|
|
def __init__(self, xmin, xmax, ymin, ymax):
|
|
self.xmin = xmin
|
|
self.xmax = xmax
|
|
self.ymin = ymin
|
|
self.ymax = ymax
|
|
|
|
def scale(self, fx, fy):
|
|
new = AABB(self.xmin, self.xmax, self.ymin, self.ymax)
|
|
new.xmin = fx * new.xmin
|
|
new.xmax = fx * new.xmax
|
|
new.ymin = fy * new.ymin
|
|
new.ymax = fy * new.ymax
|
|
return new
|
|
|
|
def scale_around_center(self, fx, fy):
|
|
cx = (self.xmin + self.xmax) / 2
|
|
cy = (self.ymin + self.ymax) / 2
|
|
|
|
new = AABB(self.xmin, self.xmax, self.ymin, self.ymax)
|
|
new.xmin = cx - fx * (cx - self.xmin)
|
|
new.xmax = cx + fx * (self.xmax - cx)
|
|
new.ymin = cy - fy * (cy - self.ymin)
|
|
new.ymax = cy + fy * (self.ymax - cy)
|
|
return new
|
|
|
|
def translate(self, tx, ty):
|
|
new = AABB(self.xmin, self.xmax, self.ymin, self.ymax)
|
|
new.xmin = new.xmin + tx
|
|
new.xmax = new.xmax + tx
|
|
new.ymin = new.ymin + ty
|
|
new.ymax = new.ymax + ty
|
|
return new
|
|
|
|
def as_type(self, t):
|
|
new = AABB(self.xmin, self.xmax, self.ymin, self.ymax)
|
|
new.xmin = t(new.xmin)
|
|
new.xmax = t(new.xmax)
|
|
new.ymin = t(new.ymin)
|
|
new.ymax = t(new.ymax)
|
|
return new
|
|
|
|
def enlarge_to_int_grid(self):
|
|
new = AABB(self.xmin, self.xmax, self.ymin, self.ymax)
|
|
new.xmin = np.floor(new.xmin)
|
|
new.xmax = np.ceil(new.xmax)
|
|
new.ymin = np.floor(new.ymin)
|
|
new.ymax = np.ceil(new.ymax)
|
|
return new
|
|
|
|
def clip(self, clip_aabb):
|
|
new = AABB(self.xmin, self.xmax, self.ymin, self.ymax)
|
|
new.xmin = min(max(new.xmin, clip_aabb.xmin), clip_aabb.xmax)
|
|
new.xmax = max(min(new.xmax, clip_aabb.xmax), clip_aabb.xmin)
|
|
new.ymin = min(max(new.ymin, clip_aabb.ymin), clip_aabb.ymax)
|
|
new.ymax = max(min(new.ymax, clip_aabb.ymax), clip_aabb.ymin)
|
|
return new
|
|
|
|
def area(self):
|
|
return (self.xmax - self.xmin) * (self.ymax - self.ymin)
|
|
|
|
def __str__(self):
|
|
return f'AABB(xmin={self.xmin},xmax={self.xmax},ymin={self.ymin},ymax={self.ymax})'
|
|
|
|
def __repr__(self):
|
|
return str(self)
|
|
|
|
class MapOrdering:
|
|
"""order of the maps encoding the aabbs around the words"""
|
|
SEG_WORD = 0
|
|
SEG_SURROUNDING = 1
|
|
SEG_BACKGROUND = 2
|
|
GEO_TOP = 3
|
|
GEO_BOTTOM = 4
|
|
GEO_LEFT = 5
|
|
GEO_RIGHT = 6
|
|
NUM_MAPS = 7
|
|
|
|
|
|
def encode(shape, gt, f=1.0):
|
|
gt_map = np.zeros((MapOrdering.NUM_MAPS,) + shape)
|
|
for aabb in gt:
|
|
aabb = aabb.scale(f, f)
|
|
|
|
|
|
aabb_clip = AABB(0, shape[0] - 1, 0, shape[1] - 1)
|
|
|
|
aabb_word = aabb.scale_around_center(0.5, 0.5).as_type(int).clip(aabb_clip)
|
|
aabb_sur = aabb.as_type(int).clip(aabb_clip)
|
|
gt_map[MapOrdering.SEG_SURROUNDING, aabb_sur.ymin:aabb_sur.ymax + 1, aabb_sur.xmin:aabb_sur.xmax + 1] = 1
|
|
gt_map[MapOrdering.SEG_SURROUNDING, aabb_word.ymin:aabb_word.ymax + 1, aabb_word.xmin:aabb_word.xmax + 1] = 0
|
|
gt_map[MapOrdering.SEG_WORD, aabb_word.ymin:aabb_word.ymax + 1, aabb_word.xmin:aabb_word.xmax + 1] = 1
|
|
|
|
|
|
for x in range(aabb_word.xmin, aabb_word.xmax + 1):
|
|
for y in range(aabb_word.ymin, aabb_word.ymax + 1):
|
|
gt_map[MapOrdering.GEO_TOP, y, x] = y - aabb.ymin
|
|
gt_map[MapOrdering.GEO_BOTTOM, y, x] = aabb.ymax - y
|
|
gt_map[MapOrdering.GEO_LEFT, y, x] = x - aabb.xmin
|
|
gt_map[MapOrdering.GEO_RIGHT, y, x] = aabb.xmax - x
|
|
|
|
gt_map[MapOrdering.SEG_BACKGROUND] = np.clip(1 - gt_map[MapOrdering.SEG_WORD] - gt_map[MapOrdering.SEG_SURROUNDING],
|
|
0, 1)
|
|
|
|
return gt_map
|
|
|
|
|
|
def subsample(idx, max_num):
|
|
"""restrict fg indices to a maximum number"""
|
|
f = len(idx[0]) / max_num
|
|
if f > 1:
|
|
a = np.asarray([idx[0][int(j * f)] for j in range(max_num)], np.int64)
|
|
b = np.asarray([idx[1][int(j * f)] for j in range(max_num)], np.int64)
|
|
idx = (a, b)
|
|
return idx
|
|
|
|
|
|
def fg_by_threshold(thres, max_num=None):
|
|
"""all pixels above threshold are fg pixels, optionally limited to a maximum number"""
|
|
|
|
def func(seg_map):
|
|
idx = np.where(seg_map > thres)
|
|
if max_num is not None:
|
|
idx = subsample(idx, max_num)
|
|
return idx
|
|
|
|
return func
|
|
|
|
|
|
def fg_by_cc(thres, max_num):
|
|
"""take a maximum number of pixels per connected component, but at least 3 (->DBSCAN minPts)"""
|
|
|
|
def func(seg_map):
|
|
seg_mask = (seg_map > thres).astype(np.uint8)
|
|
num_labels, label_img = cv2.connectedComponents(seg_mask, connectivity=4)
|
|
max_num_per_cc = max(max_num // (num_labels + 1), 3)
|
|
|
|
all_idx = [np.empty(0, np.int64), np.empty(0, np.int64)]
|
|
for curr_label in range(1, num_labels):
|
|
curr_idx = np.where(label_img == curr_label)
|
|
curr_idx = subsample(curr_idx, max_num_per_cc)
|
|
all_idx[0] = np.append(all_idx[0], curr_idx[0])
|
|
all_idx[1] = np.append(all_idx[1], curr_idx[1])
|
|
return tuple(all_idx)
|
|
|
|
return func
|
|
|
|
|
|
def decode(pred_map, comp_fg=fg_by_threshold(0.5), f=1):
|
|
idx = comp_fg(pred_map[MapOrdering.SEG_WORD])
|
|
pred_map_masked = pred_map[..., idx[0], idx[1]]
|
|
aabbs = []
|
|
for yc, xc, pred in zip(idx[0], idx[1], pred_map_masked.T):
|
|
t = pred[MapOrdering.GEO_TOP]
|
|
b = pred[MapOrdering.GEO_BOTTOM]
|
|
l = pred[MapOrdering.GEO_LEFT]
|
|
r = pred[MapOrdering.GEO_RIGHT]
|
|
aabb = AABB(xc - l, xc + r, yc - t, yc + b)
|
|
aabbs.append(aabb.scale(f, f))
|
|
return aabbs
|
|
|
|
|
|
def main():
|
|
import matplotlib.pyplot as plt
|
|
aabbs_in = [AABB(10, 30, 30, 60)]
|
|
encoded = encode((50, 50), aabbs_in, f=0.5)
|
|
aabbs_out = decode(encoded, f=2)
|
|
print(aabbs_out[0])
|
|
plt.subplot(151)
|
|
plt.imshow(encoded[MapOrdering.SEG_WORD:MapOrdering.SEG_BACKGROUND + 1].transpose(1, 2, 0))
|
|
|
|
plt.subplot(152)
|
|
plt.imshow(encoded[MapOrdering.GEO_TOP])
|
|
plt.subplot(153)
|
|
plt.imshow(encoded[MapOrdering.GEO_BOTTOM])
|
|
plt.subplot(154)
|
|
plt.imshow(encoded[MapOrdering.GEO_LEFT])
|
|
plt.subplot(155)
|
|
plt.imshow(encoded[MapOrdering.GEO_RIGHT])
|
|
|
|
plt.show()
|
|
|
|
|
|
def compute_scale_down(input_size, output_size):
|
|
"""compute scale down factor of neural network, given input and output size"""
|
|
return output_size[0] / input_size[0]
|
|
|
|
|
|
def prob_true(p):
|
|
"""return True with probability p"""
|
|
return np.random.random() < p
|
|
|
|
|
|
class UpscaleAndConcatLayer(torch.nn.Module):
|
|
"""
|
|
take small map with cx channels
|
|
upscale to size of large map (s*s)
|
|
concat large map with cy channels and upscaled small map
|
|
apply conv and output map with cz channels
|
|
"""
|
|
|
|
def __init__(self, cx, cy, cz):
|
|
super(UpscaleAndConcatLayer, self).__init__()
|
|
self.conv = torch.nn.Conv2d(cx + cy, cz, 3, padding=1)
|
|
|
|
def forward(self, x, y, s):
|
|
x = F.interpolate(x, s)
|
|
z = torch.cat((x, y), 1)
|
|
z = F.relu(self.conv(z))
|
|
return z
|
|
|
|
|
|
class WordDetectorNet(torch.nn.Module):
|
|
|
|
input_size = (448, 448)
|
|
output_size = (224, 224)
|
|
scale_down = compute_scale_down(input_size, output_size)
|
|
|
|
def __init__(self):
|
|
super(WordDetectorNet, self).__init__()
|
|
|
|
self.backbone = resnet18()
|
|
|
|
self.up1 = UpscaleAndConcatLayer(512, 256, 256)
|
|
self.up2 = UpscaleAndConcatLayer(256, 128, 128)
|
|
self.up3 = UpscaleAndConcatLayer(128, 64, 64)
|
|
self.up4 = UpscaleAndConcatLayer(64, 64, 32)
|
|
|
|
self.conv1 = torch.nn.Conv2d(32, MapOrdering.NUM_MAPS, 3, 1, padding=1)
|
|
|
|
@staticmethod
|
|
def scale_shape(s, f):
|
|
assert s[0] % f == 0 and s[1] % f == 0
|
|
return s[0] // f, s[1] // f
|
|
|
|
def output_activation(self, x, apply_softmax):
|
|
if apply_softmax:
|
|
seg = torch.softmax(x[:, MapOrdering.SEG_WORD:MapOrdering.SEG_BACKGROUND + 1], dim=1)
|
|
else:
|
|
seg = x[:, MapOrdering.SEG_WORD:MapOrdering.SEG_BACKGROUND + 1]
|
|
geo = torch.sigmoid(x[:, MapOrdering.GEO_TOP:]) * self.input_size[0]
|
|
y = torch.cat([seg, geo], dim=1)
|
|
return y
|
|
|
|
def forward(self, x, apply_softmax=False):
|
|
|
|
|
|
s = x.shape[2:]
|
|
bb5, bb4, bb3, bb2, bb1 = self.backbone(x)
|
|
|
|
x = self.up1(bb5, bb4, self.scale_shape(s, 16))
|
|
x = self.up2(x, bb3, self.scale_shape(s, 8))
|
|
x = self.up3(x, bb2, self.scale_shape(s, 4))
|
|
x = self.up4(x, bb1, self.scale_shape(s, 2))
|
|
x = self.conv1(x)
|
|
|
|
return self.output_activation(x, apply_softmax)
|
|
|
|
|
|
def ceil32(val):
|
|
if val % 32 == 0:
|
|
return val
|
|
val = (val // 32 + 1) * 32
|
|
return val
|
|
|
|
def word_segment(path, output_folder, model_path):
|
|
|
|
os.makedirs(output_folder, exist_ok = True)
|
|
|
|
max_side_len = 5000
|
|
thres = 0.5
|
|
max_aabbs = 1000
|
|
|
|
orig = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
|
|
net = WordDetectorNet()
|
|
net.load_state_dict(torch.load(model_path, map_location='cuda'))
|
|
net.eval()
|
|
net.cuda()
|
|
|
|
f = min(max_side_len / orig.shape[0], max_side_len / orig.shape[1])
|
|
if f < 1:
|
|
orig = cv2.resize(orig, dsize=None, fx=f, fy=f)
|
|
img = np.ones((ceil32(orig.shape[0]), ceil32(orig.shape[1])), np.uint8) * 255
|
|
img[:orig.shape[0], :orig.shape[1]] = orig
|
|
|
|
img = (img / 255 - 0.5).astype(np.float32)
|
|
imgs = img[None, None, ...]
|
|
imgs = torch.from_numpy(imgs).cuda()
|
|
with torch.no_grad():
|
|
y = net(imgs, apply_softmax=True)
|
|
y_np = y.to('cpu').numpy()
|
|
scale_up = 1 / compute_scale_down(WordDetectorNet.input_size, WordDetectorNet.output_size)
|
|
|
|
img_np = imgs[0, 0].to('cpu').numpy()
|
|
pred_map = y_np[0]
|
|
|
|
aabbs = decode(pred_map, comp_fg=fg_by_cc(thres, max_aabbs), f=scale_up)
|
|
h, w = img_np.shape
|
|
aabbs = [aabb.clip(AABB(0, w - 1, 0, h - 1)) for aabb in aabbs]
|
|
clustered_aabbs = cluster_aabbs(aabbs)
|
|
|
|
img = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
|
|
|
|
for idx,bb in enumerate(clustered_aabbs):
|
|
bb1 = bb
|
|
im_i = (img_np[int(bb1.ymin):int(bb1.ymax),int(bb1.xmin):int(bb1.xmax)]+0.5)*255
|
|
cv2.imwrite(f'{output_folder}/im_{idx}.png',im_i)
|
|
|