|
import numpy as np
|
|
import os
|
|
import sys
|
|
import ntpath
|
|
import time
|
|
from . import util, html
|
|
from subprocess import Popen, PIPE
|
|
from scipy.misc import imresize
|
|
|
|
if sys.version_info[0] == 2:
|
|
VisdomExceptionBase = Exception
|
|
else:
|
|
VisdomExceptionBase = ConnectionError
|
|
|
|
|
|
def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256):
|
|
"""Save images to the disk.
|
|
|
|
Parameters:
|
|
webpage (the HTML class) -- the HTML webpage class that stores these imaegs (see html.py for more details)
|
|
visuals (OrderedDict) -- an ordered dictionary that stores (name, images (either tensor or numpy) ) pairs
|
|
image_path (str) -- the string is used to create image paths
|
|
aspect_ratio (float) -- the aspect ratio of saved images
|
|
width (int) -- the images will be resized to width x width
|
|
|
|
This function will save images stored in 'visuals' to the HTML file specified by 'webpage'.
|
|
"""
|
|
image_dir = webpage.get_image_dir()
|
|
short_path = ntpath.basename(image_path[0])
|
|
name = os.path.splitext(short_path)[0]
|
|
|
|
webpage.add_header(name)
|
|
ims, txts, links = [], [], []
|
|
|
|
for label, im_data in visuals.items():
|
|
im = util.tensor2im(im_data)
|
|
image_name = '%s_%s.png' % (name, label)
|
|
save_path = os.path.join(image_dir, image_name)
|
|
h, w, _ = im.shape
|
|
if aspect_ratio > 1.0:
|
|
im = imresize(im, (h, int(w * aspect_ratio)), interp='bicubic')
|
|
if aspect_ratio < 1.0:
|
|
im = imresize(im, (int(h / aspect_ratio), w), interp='bicubic')
|
|
util.save_image(im, save_path)
|
|
|
|
ims.append(image_name)
|
|
txts.append(label)
|
|
links.append(image_name)
|
|
webpage.add_images(ims, txts, links, width=width)
|
|
|
|
|
|
class Visualizer():
|
|
"""This class includes several functions that can display/save images and print/save logging information.
|
|
|
|
It uses a Python library 'visdom' for display, and a Python library 'dominate' (wrapped in 'HTML') for creating HTML files with images.
|
|
"""
|
|
|
|
def __init__(self, opt):
|
|
"""Initialize the Visualizer class
|
|
|
|
Parameters:
|
|
opt -- stores all the experiment flags; needs to be a subclass of BaseOptions
|
|
Step 1: Cache the training/test options
|
|
Step 2: connect to a visdom server
|
|
Step 3: create an HTML object for saveing HTML filters
|
|
Step 4: create a logging file to store training losses
|
|
"""
|
|
self.opt = opt
|
|
self.display_id = opt.display_id
|
|
self.use_html = opt.isTrain and not opt.no_html
|
|
self.win_size = opt.display_winsize
|
|
self.name = opt.name
|
|
self.port = opt.display_port
|
|
self.saved = False
|
|
if self.display_id > 0:
|
|
import visdom
|
|
self.ncols = opt.display_ncols
|
|
self.vis = visdom.Visdom(server=opt.display_server, port=opt.display_port, env=opt.display_env)
|
|
if not self.vis.check_connection():
|
|
self.create_visdom_connections()
|
|
|
|
if self.use_html:
|
|
self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web')
|
|
self.img_dir = os.path.join(self.web_dir, 'images')
|
|
print('create web directory %s...' % self.web_dir)
|
|
util.mkdirs([self.web_dir, self.img_dir])
|
|
|
|
self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt')
|
|
with open(self.log_name, "a") as log_file:
|
|
now = time.strftime("%c")
|
|
log_file.write('================ Training Loss (%s) ================\n' % now)
|
|
|
|
def reset(self):
|
|
"""Reset the self.saved status"""
|
|
self.saved = False
|
|
|
|
def create_visdom_connections(self):
|
|
"""If the program could not connect to Visdom server, this function will start a new server at port < self.port > """
|
|
cmd = sys.executable + ' -m visdom.server -p %d &>/dev/null &' % self.port
|
|
print('\n\nCould not connect to Visdom server. \n Trying to start a server....')
|
|
print('Command: %s' % cmd)
|
|
Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)
|
|
|
|
def display_current_results(self, visuals, epoch, save_result):
|
|
"""Display current results on visdom; save current results to an HTML file.
|
|
|
|
Parameters:
|
|
visuals (OrderedDict) - - dictionary of images to display or save
|
|
epoch (int) - - the current epoch
|
|
save_result (bool) - - if save the current results to an HTML file
|
|
"""
|
|
if self.display_id > 0:
|
|
ncols = self.ncols
|
|
if ncols > 0:
|
|
ncols = min(ncols, len(visuals))
|
|
h, w = next(iter(visuals.values())).shape[:2]
|
|
table_css = """<style>
|
|
table {border-collapse: separate; border-spacing: 4px; white-space: nowrap; text-align: center}
|
|
table td {width: % dpx; height: % dpx; padding: 4px; outline: 4px solid black}
|
|
</style>""" % (w, h)
|
|
|
|
title = self.name
|
|
label_html = ''
|
|
label_html_row = ''
|
|
images = []
|
|
idx = 0
|
|
for label, image in visuals.items():
|
|
image_numpy = util.tensor2im(image)
|
|
label_html_row += '<td>%s</td>' % label
|
|
images.append(image_numpy.transpose([2, 0, 1]))
|
|
idx += 1
|
|
if idx % ncols == 0:
|
|
label_html += '<tr>%s</tr>' % label_html_row
|
|
label_html_row = ''
|
|
white_image = np.ones_like(image_numpy.transpose([2, 0, 1])) * 255
|
|
while idx % ncols != 0:
|
|
images.append(white_image)
|
|
label_html_row += '<td></td>'
|
|
idx += 1
|
|
if label_html_row != '':
|
|
label_html += '<tr>%s</tr>' % label_html_row
|
|
try:
|
|
self.vis.images(images, nrow=ncols, win=self.display_id + 1,
|
|
padding=2, opts=dict(title=title + ' images'))
|
|
label_html = '<table>%s</table>' % label_html
|
|
self.vis.text(table_css + label_html, win=self.display_id + 2,
|
|
opts=dict(title=title + ' labels'))
|
|
except VisdomExceptionBase:
|
|
self.create_visdom_connections()
|
|
|
|
else:
|
|
idx = 1
|
|
try:
|
|
for label, image in visuals.items():
|
|
image_numpy = util.tensor2im(image)
|
|
self.vis.image(image_numpy.transpose([2, 0, 1]), opts=dict(title=label),
|
|
win=self.display_id + idx)
|
|
idx += 1
|
|
except VisdomExceptionBase:
|
|
self.create_visdom_connections()
|
|
|
|
if self.use_html and (save_result or not self.saved):
|
|
self.saved = True
|
|
|
|
for label, image in visuals.items():
|
|
image_numpy = util.tensor2im(image)
|
|
img_path = os.path.join(self.img_dir, 'epoch%.3d_%s.png' % (epoch, label))
|
|
util.save_image(image_numpy, img_path)
|
|
|
|
|
|
webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, refresh=1)
|
|
for n in range(epoch, 0, -1):
|
|
webpage.add_header('epoch [%d]' % n)
|
|
ims, txts, links = [], [], []
|
|
|
|
for label, image_numpy in visuals.items():
|
|
image_numpy = util.tensor2im(image)
|
|
img_path = 'epoch%.3d_%s.png' % (n, label)
|
|
ims.append(img_path)
|
|
txts.append(label)
|
|
links.append(img_path)
|
|
webpage.add_images(ims, txts, links, width=self.win_size)
|
|
webpage.save()
|
|
|
|
def plot_current_losses(self, epoch, counter_ratio, losses):
|
|
"""display the current losses on visdom display: dictionary of error labels and values
|
|
|
|
Parameters:
|
|
epoch (int) -- current epoch
|
|
counter_ratio (float) -- progress (percentage) in the current epoch, between 0 to 1
|
|
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs
|
|
"""
|
|
if not hasattr(self, 'plot_data'):
|
|
self.plot_data = {'X': [], 'Y': [], 'legend': list(losses.keys())}
|
|
self.plot_data['X'].append(epoch + counter_ratio)
|
|
self.plot_data['Y'].append([losses[k] for k in self.plot_data['legend']])
|
|
try:
|
|
self.vis.line(
|
|
X=np.stack([np.array(self.plot_data['X'])] * len(self.plot_data['legend']), 1),
|
|
Y=np.array(self.plot_data['Y']),
|
|
opts={
|
|
'title': self.name + ' loss over time',
|
|
'legend': self.plot_data['legend'],
|
|
'xlabel': 'epoch',
|
|
'ylabel': 'loss'},
|
|
win=self.display_id)
|
|
except VisdomExceptionBase:
|
|
self.create_visdom_connections()
|
|
|
|
|
|
def print_current_losses(self, epoch, iters, losses, t_comp, t_data):
|
|
"""print current losses on console; also save the losses to the disk
|
|
|
|
Parameters:
|
|
epoch (int) -- current epoch
|
|
iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch)
|
|
losses (OrderedDict) -- training losses stored in the format of (name, float) pairs
|
|
t_comp (float) -- computational time per data point (normalized by batch_size)
|
|
t_data (float) -- data loading time per data point (normalized by batch_size)
|
|
"""
|
|
message = '(epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (epoch, iters, t_comp, t_data)
|
|
for k, v in losses.items():
|
|
message += '%s: %.3f ' % (k, v)
|
|
|
|
print(message)
|
|
with open(self.log_name, "a") as log_file:
|
|
log_file.write('%s\n' % message)
|
|
|