--- license: gemma base_model: google/paligemma-3b-pt-224 tags: - generated_from_trainer datasets: - AffectNet model-index: - name: paligemma_emotion_ results: [] --- # FaceScanPaliGemma_Emotion ``` python from PIL import Image import torch from transformers import PaliGemmaProcessor, PaliGemmaForConditionalGeneration, BitsAndBytesConfig, TrainingArguments, Trainer model = PaliGemmaForConditionalGeneration.from_pretrained('NYUAD-ComNets/FaceScanPaliGemma_Emotion',torch_dtype=torch.bfloat16) input_text = "what is the emotion of the person in the image?" processor = PaliGemmaProcessor.from_pretrained("google/paligemma-3b-pt-224") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) input_image = Image.open('image_path') inputs = processor(text=input_text, images=input_image, padding="longest", do_convert_rgb=True, return_tensors="pt").to(device) inputs = inputs.to(dtype=model.dtype) with torch.no_grad(): output = model.generate(**inputs, max_length=500) result=processor.decode(output[0], skip_special_tokens=True)[len(input_text):].strip() ``` ## Model description This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on the AffectNet dataset. The model aims to classify the emotion of face image or image with one person into eight categoris such as 'neutral', 'happy', 'sad', 'surprise', 'fear', 'disgust', 'anger', 'contempt' ## Model Performance Accuracy: 59.4 %, F1 score: 59 % ## Intended uses & limitations This model is used for research purposes ## Training and evaluation data AffectNet dataset was used for training and validating the model ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.42.4 - Pytorch 2.1.2+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1 # BibTeX entry and citation info ``` @article{aldahoul2024exploring, title={Exploring Vision Language Models for Facial Attribute Recognition: Emotion, Race, Gender, and Age}, author={AlDahoul, Nouar and Tan, Myles Joshua Toledo and Kasireddy, Harishwar Reddy and Zaki, Yasir}, journal={arXiv preprint arXiv:2410.24148}, year={2024} } @misc{ComNets, url={https://huggingface.co/NYUAD-ComNets/FaceScanPaliGemma_Emotion](https://huggingface.co/NYUAD-ComNets/FaceScanPaliGemma_Emotion)}, title={FaceScanPaliGemma_Emotion}, author={Nouar AlDahoul, Yasir Zaki} }