--- license: mit base_model: cointegrated/rubert-tiny2 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: my_awesome_wnut_model_ results: [] --- # my_awesome_wnut_model_ This model is a fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1997 - Precision: 0.3076 - Recall: 0.4690 - F1: 0.3716 - Accuracy: 0.9322 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 7 - eval_batch_size: 7 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 24 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.621 | 2.41 | 140 | 0.4025 | 0.0 | 0.0 | 0.0 | 0.9050 | | 0.3224 | 4.83 | 280 | 0.2750 | 0.2036 | 0.2074 | 0.2055 | 0.9118 | | 0.2421 | 7.24 | 420 | 0.2326 | 0.2706 | 0.3406 | 0.3016 | 0.9220 | | 0.2061 | 9.66 | 560 | 0.2146 | 0.2968 | 0.4102 | 0.3444 | 0.9269 | | 0.1779 | 12.07 | 700 | 0.2037 | 0.3125 | 0.4257 | 0.3604 | 0.9306 | | 0.1606 | 14.48 | 840 | 0.2042 | 0.3044 | 0.4613 | 0.3668 | 0.9298 | | 0.1544 | 16.9 | 980 | 0.2001 | 0.3101 | 0.4690 | 0.3734 | 0.9310 | | 0.1402 | 19.31 | 1120 | 0.1991 | 0.3130 | 0.4690 | 0.3755 | 0.9316 | | 0.139 | 21.72 | 1260 | 0.1997 | 0.3076 | 0.4690 | 0.3716 | 0.9322 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2