a2c-AntBulletEnv-v0 / config.json
NatashaN's picture
Initial commit
a6ecc79
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe7c56f8310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe7c56f83a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe7c56f8430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe7c56f84c0>", "_build": "<function ActorCriticPolicy._build at 0x7fe7c56f8550>", "forward": "<function ActorCriticPolicy.forward at 0x7fe7c56f85e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe7c56f8670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe7c56f8700>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe7c56f8790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe7c56f8820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe7c56f88b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe7c56f8940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe7c56f7e40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682306355245375972, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACSFpL1QHnO+r4/dPrjD3z6wMKS+SzEnP9CfHb6Chgu+HINFv0VglT91B4W/xgr+u8SxoT3zc8I/SL+BPvmTbD/1jRy9PJ8XQDlLDL03pYO/47cHv7+yaD9hyvA+/aYJP0F0e798ywQ/JZItP/4Shj8ReKA/wWq+vxcRcL+22H0/ORVTvoI7EL7Nwo+/C0fpvlVT0j5liwZAg08OP51z/T4lypi/iKjbPTl7nz47UEzAP6q4vwruqD5K8Vy/AWKQP9PBgEAswEi/djF6PjDUW8BkUII/q8H2vyWSLT/oZnS/YQFgP9eaTb+y4UM9hd3pP1kEB7+FW+e+OckQPohHDb/zu4++aYiEQCei1z985BY/RLiavwwnOT6VW2W/QqmmvIYpn79YBae/CZz7PRQcGkDcnac+jspmP2ihfb/tbAg/ZFCCP3zLBD8lki0/6GZ0v8Vvqz4ksmC/aDTSvHqPkz/7cg7AmdhjvuTzo76DX627dn8MPm9tCcChYqm+4M8fwOfOWr8V6im+DF46vnF75D8lGMu/itsMvgJngD5qXeu/eZ3Wvulu679PBlU/3aoaP0F0e798ywQ/lcm8v+hmdL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABSN8o2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKljnvQAAAACMJ/e/AAAAAEywnr0AAAAAIBLePwAAAACdSvs9AAAAAGuz4T8AAAAAE0vSvQAAAADAqfC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV07itgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgB9Zxz0AAAAAVCEBwAAAAADVo7u9AAAAADZe5D8AAAAAhCKNvAAAAADDAfw/AAAAAEqftT0AAAAAan3ovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC16RDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICGs1w8AAAAADIv9b8AAAAA/Y3hPQAAAAANguM/AAAAAEtGrTwAAAAA2MHfPwAAAABAT6+7AAAAAEZ8/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMbIQ1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZjjNvAAAAACXZ/e/AAAAAES9P7sAAAAAaEz9PwAAAADesoY8AAAAAIRi4T8AAAAAIEKSuwAAAACjNNu/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJxy35WRzRyMAWyUTegDjAF0lEdApB8gc3l0YHV9lChoBkdAnQAGM4tHx2gHTegDaAhHQKQfZqnFYMh1fZQoaAZHQJrM7aFmFrVoB03oA2gIR0CkJLFImPYGdX2UKGgGR0Cd2V7ngYP5aAdN6ANoCEdApCYal1r6+HV9lChoBkdAnJWwLApKBmgHTegDaAhHQKQoyxWT5ft1fZQoaAZHQJi4ZJaq0dBoB03oA2gIR0CkKRP0RODbdX2UKGgGR0CZIMgssg+yaAdN6ANoCEdApC7d5OafBnV9lChoBkdAmnPQyZa3Z2gHTegDaAhHQKQxANwR5C51fZQoaAZHQJq7/dgv115oB03oA2gIR0CkNZtrTH81dX2UKGgGR0CfIWpqREF4aAdN6ANoCEdApDXmXzDn/3V9lChoBkdAoB6MtVaOgmgHTegDaAhHQKQ7FSQYDT11fZQoaAZHQKA6fYigTRJoB03oA2gIR0CkPH/io86ndX2UKGgGR0CfXtxHXmNjaAdN6ANoCEdApD86oQ4CIXV9lChoBkdAmurOCsfaH2gHTegDaAhHQKQ/i52hZhd1fZQoaAZHQJcF6R4hUzdoB03oA2gIR0CkRMQvg3tKdX2UKGgGR0CYcHk4FRpDaAdN6ANoCEdApEYaHCXQdHV9lChoBkdAnZVMo6S1V2gHTegDaAhHQKRIztZ3cHp1fZQoaAZHQJsNAc7yQPtoB03oA2gIR0CkSRMFUyYYdX2UKGgGR0CXxZLiMo+faAdN6ANoCEdApFFGDcuannV9lChoBkdAmrqCIpH7QGgHTegDaAhHQKRSsN96Tnt1fZQoaAZHQJ3x7StvGZNoB03oA2gIR0CkVXIJzDGcdX2UKGgGR0CWpwQSi/O/aAdN6ANoCEdApFW6ya/h2nV9lChoBkdAnn4LhzeXRmgHTegDaAhHQKRbJph4MWp1fZQoaAZHQJa7ttALRa5oB03oA2gIR0CkXKIXbdrPdX2UKGgGR0CfbMYl6Z6VaAdN6ANoCEdApF9i5TZQHnV9lChoBkdAneDrjDKoymgHTegDaAhHQKRfrXiiqQ11fZQoaAZHQJ+NFJBgNPRoB03oA2gIR0CkZOgS39aVdX2UKGgGR0Cd7zsC1Z1WaAdN6ANoCEdApGbLcqOLi3V9lChoBkdAnw6TYAbQ1WgHTegDaAhHQKRrTtu1ndx1fZQoaAZHQJ+hJJvo/zJoB03oA2gIR0Cka9bD2rXEdX2UKGgGR0CdglEzwc5saAdN6ANoCEdApHGYt8NQTHV9lChoBkdAoAp97SiM52gHTegDaAhHQKRzCnqmj0t1fZQoaAZHQKDsFSYPXkJoB03oA2gIR0CkdcM+V1OkdX2UKGgGR0CdQoIZqEeyaAdN6ANoCEdApHYPCTEBKnV9lChoBkdAoBdNAkcCHWgHTegDaAhHQKR7UwQlKK51fZQoaAZHQKFceZv1lGxoB03oA2gIR0CkfLlBppN9dX2UKGgGR0CYmKFXJYDDaAdN6ANoCEdApH92hsZYP3V9lChoBkdAniNv9Hc1wmgHTegDaAhHQKR/vT0g8r91fZQoaAZHQJ+Pe0UoKD1oB03oA2gIR0Ckh1TpgTh6dX2UKGgGR0CaP9A7PppwaAdN6ANoCEdApIly/9Hc13V9lChoBkdAn/5gf+0gKWgHTegDaAhHQKSMJDqnm7t1fZQoaAZHQJyMo4R28qZoB03oA2gIR0CkjGi0v4/NdX2UKGgGR0CamKzHjp9raAdN6ANoCEdApJG5xkupTHV9lChoBkdAn+9ltfoicGgHTegDaAhHQKSTHPUrkKh1fZQoaAZHQKBda89Oh01oB03oA2gIR0CkleaxxDLKdX2UKGgGR0CgjxMNUfgaaAdN6ANoCEdApJYs/OdGzHV9lChoBkdAngqbcsUZemgHTegDaAhHQKSbafjjrAx1fZQoaAZHQJdE9vze41BoB03oA2gIR0CknM0m+j/NdX2UKGgGR0Cehb+j/MnraAdN6ANoCEdApKDVPacqfHV9lChoBkdAoANbpcHGCWgHTegDaAhHQKShUwUxmCl1fZQoaAZHQKArA5Jbt7doB03oA2gIR0CkqEZfUnXvdX2UKGgGR0CeiB0ygwoLaAdN6ANoCEdApKm1jTa0yHV9lChoBkdAoBlCBZpztGgHTegDaAhHQKSsaattALR1fZQoaAZHQKCGvfUF0PpoB03oA2gIR0CkrKyLIgeSdX2UKGgGR0Cfd4gh8pkPaAdN6ANoCEdApLHFbmlqJ3V9lChoBkdAoI3P0oScsmgHTegDaAhHQKSzNTodMkB1fZQoaAZHQJ+rFJ+UhV5oB03oA2gIR0CktekiD/VBdX2UKGgGR0CgXP5p8F6iaAdN6ANoCEdApLYydz4k/3V9lChoBkdAnNCq2BreqWgHTegDaAhHQKS9DgXuVop1fZQoaAZHQKBcEE9t/F1oB03oA2gIR0Ckv5EAHVwxdX2UKGgGR0B9MPzshPj5aAdN6ANoCEdApMLmfdyksXV9lChoBkdAkwLJDeCTU2gHTegDaAhHQKTDLhQ3xWl1fZQoaAZHQJwtnJA+pwVoB03oA2gIR0CkyIa0QbuMdX2UKGgGR0CdqgRDkU9IaAdN6ANoCEdApMn18E3bVXV9lChoBkdAoFvdh7Vrh2gHTegDaAhHQKTMnk9U0el1fZQoaAZHQJ/L1h/iHZdoB03oA2gIR0CkzOMGgSOBdX2UKGgGR0CgiUoQFs55aAdN6ANoCEdApNIGTq0MPXV9lChoBkdAoM/cyvcJt2gHTegDaAhHQKTTak56t1Z1fZQoaAZHQKAvyvgWJrNoB03oA2gIR0Ck1sTmOlwcdX2UKGgGR0CXTvxfv4M4aAdN6ANoCEdApNcfm7rcCnV9lChoBkdAmptDPfKp1mgHTegDaAhHQKTemJVsDW91fZQoaAZHQJt8ALBsQ/ZoB03oA2gIR0Ck4BIx59mZdX2UKGgGR0BE2yBK+SKWaAdN6ANoCEdApOLJj+aScXV9lChoBkdAlN6xIjGDMGgHTegDaAhHQKTjFZha1Tl1fZQoaAZHwHdy7pzLfUFoB03oA2gIR0Ck6GE4vN/wdX2UKGgGR0CX06srNGExaAdN6ANoCEdApOnYxrSE13V9lChoBkdAoCysNvwVkGgHTegDaAhHQKTsktMfzSV1fZQoaAZHQJ0tb9P1tfpoB03oA2gIR0Ck7NsPSUkfdX2UKGgGR0CbgaU21lXjaAdN6ANoCEdApPLK6nR9gHV9lChoBkdAm+ncZ9/jKmgHTegDaAhHQKT1BziCJ411fZQoaAZHQJ87zi4rjHZoB03oA2gIR0Ck+U+CsfaIdX2UKGgGR0Cds1ZAprk9aAdN6ANoCEdApPma0Y0l7nV9lChoBkdAkiywEIPbwmgHTckCaAhHQKT9j1h9b5d1fZQoaAZHQJ8xhUhmoR9oB03oA2gIR0Ck/t925hBrdX2UKGgGR0CgKOMfigkDaAdN6ANoCEdApQMB5Rjz7XV9lChoBkdAnJ9CSeRPoGgHTegDaAhHQKUDSSgXdj51fZQoaAZHQKAFK8VYZEVoB03oA2gIR0ClBzgJswcpdX2UKGgGR0Ce4eMXJo0zaAdN6ANoCEdApQiOP1ct5HV9lChoBkdAm3sHNX5nDmgHTegDaAhHQKUMvTqjaf11fZQoaAZHQJ3MMz544ZNoB03oA2gIR0ClDSUZeiSJdX2UKGgGR0CfNn/jKgZkaAdN6ANoCEdApRMz+5vtMXV9lChoBkdAmY/NVmz0H2gHTegDaAhHQKUVMIOYplV1fZQoaAZHQJ+q/gk1MuhoB03oA2gIR0ClGVPHT7VKdX2UKGgGR0CenRdat9x7aAdN6ANoCEdApRmfIn0CinV9lChoBkdAnDskYbbUPWgHTegDaAhHQKUdjwd8zAN1fZQoaAZHQJiGRj3Ehq1oB03oA2gIR0ClHuvKlpGndX2UKGgGR0CdT15uZThpaAdN6ANoCEdApSMUMEzO5nV9lChoBkdAnn4s3dbgTGgHTegDaAhHQKUjXikwevJ1fZQoaAZHQJ8BPY8Md95oB03oA2gIR0ClJyR9XtBwdX2UKGgGR0Ce/w3RXwLFaAdN6ANoCEdApShnvphWo3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}