NatthawatTung
commited on
Commit
•
fdfd785
1
Parent(s):
179e283
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: ALL_mt5-base_10_spider_10_wikiSQL
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# ALL_mt5-base_10_spider_10_wikiSQL
|
13 |
+
|
14 |
+
This model was trained from scratch on an unknown dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 0.0241
|
17 |
+
- Rouge2 Precision: 0.8525
|
18 |
+
- Rouge2 Recall: 0.5646
|
19 |
+
- Rouge2 Fmeasure: 0.6434
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 5e-05
|
39 |
+
- train_batch_size: 16
|
40 |
+
- eval_batch_size: 16
|
41 |
+
- seed: 42
|
42 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
43 |
+
- lr_scheduler_type: linear
|
44 |
+
- num_epochs: 10
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|
49 |
+
|:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:|
|
50 |
+
| 0.4259 | 1.0 | 875 | 0.1208 | 0.6006 | 0.3892 | 0.4443 |
|
51 |
+
| 0.1482 | 2.0 | 1750 | 0.0808 | 0.7001 | 0.4721 | 0.5333 |
|
52 |
+
| 0.1073 | 3.0 | 2625 | 0.0588 | 0.7416 | 0.5007 | 0.5657 |
|
53 |
+
| 0.0867 | 4.0 | 3500 | 0.0461 | 0.7741 | 0.5208 | 0.5894 |
|
54 |
+
| 0.0769 | 5.0 | 4375 | 0.0382 | 0.7999 | 0.5351 | 0.6073 |
|
55 |
+
| 0.0658 | 6.0 | 5250 | 0.0327 | 0.8225 | 0.5465 | 0.6217 |
|
56 |
+
| 0.0574 | 7.0 | 6125 | 0.0283 | 0.8364 | 0.5546 | 0.6314 |
|
57 |
+
| 0.0525 | 8.0 | 7000 | 0.0261 | 0.8444 | 0.5593 | 0.6371 |
|
58 |
+
| 0.0498 | 9.0 | 7875 | 0.0245 | 0.8515 | 0.5643 | 0.6429 |
|
59 |
+
| 0.0491 | 10.0 | 8750 | 0.0241 | 0.8525 | 0.5646 | 0.6434 |
|
60 |
+
|
61 |
+
|
62 |
+
### Framework versions
|
63 |
+
|
64 |
+
- Transformers 4.26.1
|
65 |
+
- Pytorch 2.1.2
|
66 |
+
- Datasets 2.16.1
|
67 |
+
- Tokenizers 0.13.3
|