File size: 1,545 Bytes
e8d7deb
 
 
 
73abd3b
e8d7deb
 
 
73abd3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8d7deb
73abd3b
e8d7deb
73abd3b
e8d7deb
73abd3b
 
e8d7deb
73abd3b
e8d7deb
73abd3b
 
e8d7deb
73abd3b
 
e8d7deb
73abd3b
 
b8d4ec0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
tags:
- autotrain
- token-classification
- arxiv:2104.09617
base_model: NbAiLab/nb-bert-base
datasets:
- ltgoslo/norne
license: apache-2.0
language:
- 'no'
- nb
- nn
pipeline_tag: token-classification
library_name: transformers
inference:
  parameters:
    aggregation_strategy: "first"
widget:
- text: Trond Giske har bekreftet  spørsmål fra Adresseavisen at Hansen leide et rom i hans leilighet i Trondheim.
model-index:
- name: NbAiLab/nb-bert-base-pos
  results:
    - task:
        name: Token Classification
        type: token-classification
      dataset:
        name: ltgoslo/norne
        type: ltgoslo/norne
        args: bokmaal
      metrics:
        - name: Test Loss
          type: loss
          value: 0.0650700181722641
        - name: Test Precision
          type: precision
          value: 0.985085078075765
        - name: Test Recall
          type: recall
          value: 0.9877826148012919
        - name: Test F1
          type: f1
          value: 0.9864320022438031
        - name: Test Accuracy
          type: accuracy
          value: 0.9861949007001629
---
**Release 1.0** (November 6, 2024)

# nb-bert-base-pos

## Description
NB-Bert base model fine-tuned on the Part of Speech task using the [NorNE dataset](https://huggingface.co/datasets/ltgoslo/norne).

## Usage

```python
from transformers import pipeline

pos = pipeline("ner", "NbAiLab/nb-bert-base-pos")
example = "Jeg heter Kjell og bor i Oslo."

pos_results = pos(example)
print(ner_results)
```

More on https://arxiv.org/abs/2104.09617