Rolv-Arild commited on
Commit
86ecda9
·
1 Parent(s): 349c5e4

Reset git (out of space)

Browse files
Files changed (2) hide show
  1. run.sh +38 -0
  2. run_speech_recognition_ctc.py +807 -0
run.sh ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ WANDB_ENTITY=NbAiLab WANDB_PROJECT=wav2vec2 python run_speech_recognition_ctc.py \
2
+ --model_name_or_path="facebook/wav2vec2-xls-r-1b" \
3
+ --hub_model_id="NbAiLab/wav2vec2-1b-npsc-nst" \
4
+ --output_dir="./" \
5
+ --num_train_epochs="40" \
6
+ --per_device_train_batch_size="12" \
7
+ --per_device_eval_batch_size="12" \
8
+ --gradient_accumulation_steps="2" \
9
+ --learning_rate="2e-5" \
10
+ --warmup_steps="2000" \
11
+ --length_column_name="input_length" \
12
+ --evaluation_strategy="steps" \
13
+ --text_column_name="text" \
14
+ --save_steps="500" \
15
+ --eval_steps="500" \
16
+ --logging_steps="100" \
17
+ --layerdrop="0.041" \
18
+ --attention_dropout="0.094" \
19
+ --activation_dropout="0.055" \
20
+ --hidden_dropout="0.047" \
21
+ --save_total_limit="3" \
22
+ --freeze_feature_encoder \
23
+ --feat_proj_dropout="0.04" \
24
+ --mask_time_prob="0.082" \
25
+ --mask_time_length="10" \
26
+ --mask_feature_prob="0.25" \
27
+ --mask_feature_length="64" \
28
+ --gradient_checkpointing \
29
+ --min_duration_in_seconds="0.5" \
30
+ --max_duration_in_seconds="30.0" \
31
+ --use_auth_token \
32
+ --seed="42" \
33
+ --fp16 \
34
+ --group_by_length \
35
+ --do_train --do_eval \
36
+ --push_to_hub \
37
+ --preprocessing_num_workers="32" \
38
+ --ctc_zero_infinity
run_speech_recognition_ctc.py ADDED
@@ -0,0 +1,807 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+
16
+ """ Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
17
+
18
+ import functools
19
+ import json
20
+ import logging
21
+ import os
22
+ import re
23
+ import sys
24
+ import warnings
25
+ from dataclasses import dataclass, field
26
+ from typing import Dict, List, Optional, Union
27
+
28
+ import datasets
29
+ import numpy as np
30
+ import torch
31
+ from datasets import DatasetDict, load_dataset, load_metric
32
+
33
+ import transformers
34
+ from transformers import (
35
+ AutoConfig,
36
+ AutoFeatureExtractor,
37
+ AutoModelForCTC,
38
+ AutoProcessor,
39
+ AutoTokenizer,
40
+ HfArgumentParser,
41
+ Trainer,
42
+ TrainingArguments,
43
+ Wav2Vec2Processor,
44
+ set_seed,
45
+ )
46
+ from transformers.trainer_utils import get_last_checkpoint, is_main_process
47
+ from transformers.utils import check_min_version
48
+ from transformers.utils.versions import require_version
49
+
50
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
51
+ check_min_version("4.16.0.dev0")
52
+
53
+ require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
54
+
55
+ logger = logging.getLogger(__name__)
56
+
57
+
58
+ def list_field(default=None, metadata=None):
59
+ return field(default_factory=lambda: default, metadata=metadata)
60
+
61
+
62
+ @dataclass
63
+ class ModelArguments:
64
+ """
65
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
66
+ """
67
+
68
+ model_name_or_path: str = field(
69
+ metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
70
+ )
71
+ tokenizer_name_or_path: Optional[str] = field(
72
+ default=None,
73
+ metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
74
+ )
75
+ cache_dir: Optional[str] = field(
76
+ default=None,
77
+ metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
78
+ )
79
+ freeze_feature_encoder: bool = field(
80
+ default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
81
+ )
82
+ attention_dropout: float = field(
83
+ default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
84
+ )
85
+ activation_dropout: float = field(
86
+ default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
87
+ )
88
+ feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
89
+ hidden_dropout: float = field(
90
+ default=0.0,
91
+ metadata={
92
+ "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
93
+ },
94
+ )
95
+ final_dropout: float = field(
96
+ default=0.0,
97
+ metadata={"help": "The dropout probability for the final projection layer."},
98
+ )
99
+ mask_time_prob: float = field(
100
+ default=0.05,
101
+ metadata={
102
+ "help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
103
+ "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
104
+ "vectors will be masked along the time axis."
105
+ },
106
+ )
107
+ mask_time_length: int = field(
108
+ default=10,
109
+ metadata={"help": "Length of vector span to mask along the time axis."},
110
+ )
111
+ mask_feature_prob: float = field(
112
+ default=0.0,
113
+ metadata={
114
+ "help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
115
+ "span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
116
+ },
117
+ )
118
+ mask_feature_length: int = field(
119
+ default=10,
120
+ metadata={"help": "Length of vector span to mask along the feature axis."},
121
+ )
122
+ layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
123
+ ctc_loss_reduction: Optional[str] = field(
124
+ default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
125
+ )
126
+ ctc_zero_infinity: Optional[bool] = field(
127
+ default=False, metadata={"help": "If True, will try yo aboud the CTC loss goinf to infinity."}
128
+ )
129
+
130
+
131
+ @dataclass
132
+ class DataTrainingArguments:
133
+ """
134
+ Arguments pertaining to what data we are going to input our model for training and eval.
135
+
136
+ Using `HfArgumentParser` we can turn this class
137
+ into argparse arguments to be able to specify them on
138
+ the command line.
139
+ """
140
+
141
+ # dataset_name: str = field(
142
+ # metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
143
+ # )
144
+ # dataset_config_name: str = field(
145
+ # default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
146
+ # )
147
+ train_split_name: str = field(
148
+ default="train",
149
+ metadata={
150
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
151
+ },
152
+ )
153
+ eval_split_name: str = field(
154
+ default="test",
155
+ metadata={
156
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
157
+ },
158
+ )
159
+ audio_column_name: str = field(
160
+ default="audio",
161
+ metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
162
+ )
163
+ text_column_name: str = field(
164
+ default="text",
165
+ metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
166
+ )
167
+ overwrite_cache: bool = field(
168
+ default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
169
+ )
170
+ preprocessing_num_workers: Optional[int] = field(
171
+ default=None,
172
+ metadata={"help": "The number of processes to use for the preprocessing."},
173
+ )
174
+ max_train_samples: Optional[int] = field(
175
+ default=None,
176
+ metadata={
177
+ "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
178
+ "value if set."
179
+ },
180
+ )
181
+ max_eval_samples: Optional[int] = field(
182
+ default=None,
183
+ metadata={
184
+ "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
185
+ "value if set."
186
+ },
187
+ )
188
+ chars_to_ignore: Optional[List[str]] = list_field(
189
+ default=None,
190
+ metadata={"help": "A list of characters to remove from the transcripts."},
191
+ )
192
+ eval_metrics: List[str] = list_field(
193
+ default=["wer"],
194
+ metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
195
+ )
196
+ max_duration_in_seconds: float = field(
197
+ default=20.0,
198
+ metadata={
199
+ "help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
200
+ },
201
+ )
202
+ min_duration_in_seconds: float = field(
203
+ default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
204
+ )
205
+ preprocessing_only: bool = field(
206
+ default=False,
207
+ metadata={
208
+ "help": "Whether to only do data preprocessing and skip training. "
209
+ "This is especially useful when data preprocessing errors out in distributed training due to timeout. "
210
+ "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
211
+ "so that the cached datasets can consequently be loaded in distributed training"
212
+ },
213
+ )
214
+ use_auth_token: bool = field(
215
+ default=False,
216
+ metadata={
217
+ "help": "If :obj:`True`, will use the token generated when running"
218
+ ":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
219
+ },
220
+ )
221
+ unk_token: str = field(
222
+ default="[UNK]",
223
+ metadata={"help": "The unk token for the tokenizer"},
224
+ )
225
+ pad_token: str = field(
226
+ default="[PAD]",
227
+ metadata={"help": "The padding token for the tokenizer"},
228
+ )
229
+ word_delimiter_token: str = field(
230
+ default="|",
231
+ metadata={"help": "The word delimiter token for the tokenizer"},
232
+ )
233
+ phoneme_language: Optional[str] = field(
234
+ default=None,
235
+ metadata={
236
+ "help": "The target language that should be used be"
237
+ " passed to the tokenizer for tokenization. Note that"
238
+ " this is only relevant if the model classifies the"
239
+ " input audio to a sequence of phoneme sequences."
240
+ },
241
+ )
242
+
243
+
244
+ @dataclass
245
+ class DataCollatorCTCWithPadding:
246
+ """
247
+ Data collator that will dynamically pad the inputs received.
248
+ Args:
249
+ processor (:class:`~transformers.AutoProcessor`)
250
+ The processor used for proccessing the data.
251
+ padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
252
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
253
+ among:
254
+ * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
255
+ sequence if provided).
256
+ * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
257
+ maximum acceptable input length for the model if that argument is not provided.
258
+ * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
259
+ different lengths).
260
+ max_length (:obj:`int`, `optional`):
261
+ Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
262
+ max_length_labels (:obj:`int`, `optional`):
263
+ Maximum length of the ``labels`` returned list and optionally padding length (see above).
264
+ pad_to_multiple_of (:obj:`int`, `optional`):
265
+ If set will pad the sequence to a multiple of the provided value.
266
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
267
+ 7.5 (Volta).
268
+ """
269
+
270
+ processor: AutoProcessor
271
+ padding: Union[bool, str] = "longest"
272
+ pad_to_multiple_of: Optional[int] = None
273
+ pad_to_multiple_of_labels: Optional[int] = None
274
+
275
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
276
+ # split inputs and labels since they have to be of different lenghts and need
277
+ # different padding methods
278
+ input_features = [{"input_values": feature["input_values"]} for feature in features]
279
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
280
+
281
+ batch = self.processor.pad(
282
+ input_features,
283
+ padding=self.padding,
284
+ pad_to_multiple_of=self.pad_to_multiple_of,
285
+ return_tensors="pt",
286
+ )
287
+
288
+ with self.processor.as_target_processor():
289
+ labels_batch = self.processor.pad(
290
+ label_features,
291
+ padding=self.padding,
292
+ pad_to_multiple_of=self.pad_to_multiple_of_labels,
293
+ return_tensors="pt",
294
+ )
295
+
296
+ # replace padding with -100 to ignore loss correctly
297
+ labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
298
+
299
+ batch["labels"] = labels
300
+
301
+ return batch
302
+
303
+
304
+ def create_vocabulary_from_data(
305
+ datasets: DatasetDict,
306
+ word_delimiter_token: Optional[str] = None,
307
+ unk_token: Optional[str] = None,
308
+ pad_token: Optional[str] = None,
309
+ ):
310
+ # Given training and test labels create vocabulary
311
+ alphabet = set()
312
+
313
+ def extract_all_chars(batch):
314
+ all_text = " ".join(batch["target_text"])
315
+ alphabet.update(all_text)
316
+
317
+ datasets.map(
318
+ extract_all_chars,
319
+ batched=True,
320
+ batch_size=-1,
321
+ keep_in_memory=True,
322
+ remove_columns=datasets["train"].column_names,
323
+ )
324
+
325
+ # # take union of all unique characters in each dataset
326
+ # vocab_set = functools.reduce(
327
+ # lambda vocab_1, vocab_2: {"vocab": list(set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]))}, vocabs.values()
328
+ # )["vocab"][0]
329
+
330
+ vocab_dict = {v: k for k, v in enumerate(sorted(list(alphabet)))}
331
+
332
+ # replace white space with delimiter token
333
+ if word_delimiter_token is not None:
334
+ vocab_dict[word_delimiter_token] = vocab_dict[" "]
335
+ del vocab_dict[" "]
336
+
337
+ # add unk and pad token
338
+ if unk_token is not None:
339
+ vocab_dict[unk_token] = len(vocab_dict)
340
+
341
+ if pad_token is not None:
342
+ vocab_dict[pad_token] = len(vocab_dict)
343
+
344
+ return vocab_dict
345
+
346
+
347
+ def make_dataset(seed=42):
348
+ # Pre-processing dataset
349
+ import re
350
+
351
+ def map_nst(entry):
352
+ text = entry["text"].lower()
353
+ text = text.replace("(...Vær stille under dette opptaket...)", "")
354
+ text = re.sub('[áàâ]', 'a', text)
355
+ text = re.sub('[ä]', 'æ', text)
356
+ text = re.sub('[éèëê]', 'e', text)
357
+ text = re.sub('[íìïî]', 'i', text)
358
+ text = re.sub('[óòöô]', 'o', text)
359
+ text = re.sub('[ö]', 'ø', text)
360
+ text = re.sub('[ç]', 'c', text)
361
+ text = re.sub('[úùüû]', 'u', text)
362
+ # text = re.sub('\\(?=(Punktum|Komma|Utropstegn|Spørsmålstegn))', ' ', text)
363
+ text = re.sub('\s+', ' ', text)
364
+ return {"text": text}
365
+
366
+ def filter_nst(entry):
367
+ if not ((len(entry["text"]) <= len(entry["audio"]["array"]) // 320) and (len(entry["text"].strip()) >= 3)):
368
+ return False # Too short
369
+ if re.match(entry["type"], "pIW|CA"):
370
+ return False # Spelling out words
371
+ return True
372
+
373
+ def filter_npsc(entry):
374
+ # False if there are digits in the text
375
+ if not ((len(entry["text"]) <= len(entry["audio"]["array"]) // 320) and (len(entry["text"].strip()) >= 3)):
376
+ return False # Too short
377
+ if re.search("\d", entry["text"]):
378
+ return False
379
+ return True
380
+
381
+ def map_npsc(entry):
382
+ batch = {"text": entry["text"].lower()}
383
+ batch["text"] = re.sub('[áàâ]', 'a', batch["text"])
384
+ batch["text"] = re.sub('[ä]', 'æ', batch["text"])
385
+ batch["text"] = re.sub('[éèëê]', 'e', batch["text"])
386
+ batch["text"] = re.sub('[íìïî]', 'i', batch["text"])
387
+ batch["text"] = re.sub('[óòöô]', 'o', batch["text"])
388
+ batch["text"] = re.sub('[ö]', 'ø', batch["text"])
389
+ batch["text"] = re.sub('[ç]', 'c', batch["text"])
390
+ batch["text"] = re.sub('[úùüû]', 'u', batch["text"])
391
+ batch["text"] = re.sub('\s', ' ', batch["text"])
392
+ batch["text"] = re.sub('<ee>', 'eee', batch["text"])
393
+ batch["text"] = re.sub('<qq>', 'qqq', batch["text"])
394
+ batch["text"] = re.sub('<mm>', 'mmm', batch["text"])
395
+ batch["text"] = re.sub('<inaudible>', 'xxx', batch["text"])
396
+ # batch["text"] = re.sub('<inaudible>', '?', batch["text"])
397
+ if "<" in batch["text"]:
398
+ raise ValueError(batch["text"])
399
+ return batch
400
+
401
+ nst = datasets.load_dataset("NbAiLab/NST", "no-close")
402
+ npsc = datasets.load_dataset("NbAiLab/NPSC", "16K_mp3")
403
+ # TODO NST_hesitate
404
+
405
+ split = len(npsc["train"]) / (len(npsc["train"]) + len(npsc["validation"])) # Use same train/val ratio as NPSC
406
+ nst_train = nst["train"].train_test_split(train_size=split, seed=seed)
407
+ nst["train"] = nst_train["train"]
408
+ nst["validation"] = nst_train["test"]
409
+
410
+ nst = nst.filter(filter_nst).map(map_nst).shuffle(seed=seed)
411
+ npsc = npsc.filter(filter_npsc).map(map_npsc).shuffle(seed=seed)
412
+
413
+ npsc_base = npsc.remove_columns([col for col in npsc["train"].column_names if col not in ["text", "audio"]])
414
+ nst_base = nst.remove_columns([col for col in nst["train"].column_names if col not in ["text", "audio"]])
415
+
416
+ combined = {}
417
+ for split in "train", "validation", "test":
418
+ probs = np.array([len(nst_base[split]), len(npsc_base[split])]) # Weight by number of examples
419
+ probs = (probs / probs.sum()).tolist()
420
+ comb = datasets.interleave_datasets([nst_base[split], npsc_base[split]], probabilities=probs, seed=seed)
421
+ combined[split] = comb
422
+
423
+ return datasets.DatasetDict(**combined)
424
+
425
+
426
+ def main():
427
+ # See all possible arguments in src/transformers/training_args.py
428
+ # or by passing the --help flag to this script.
429
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
430
+
431
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
432
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
433
+ # If we pass only one argument to the script and it's the path to a json file,
434
+ # let's parse it to get our arguments.
435
+ model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
436
+ else:
437
+ model_args, data_args, training_args = parser.parse_args_into_dataclasses()
438
+
439
+ # Detecting last checkpoint.
440
+ last_checkpoint = None
441
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
442
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
443
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
444
+ raise ValueError(
445
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
446
+ "Use --overwrite_output_dir to overcome."
447
+ )
448
+ elif last_checkpoint is not None:
449
+ logger.info(
450
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
451
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
452
+ )
453
+
454
+ # Setup logging
455
+ logging.basicConfig(
456
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
457
+ datefmt="%m/%d/%Y %H:%M:%S",
458
+ handlers=[logging.StreamHandler(sys.stdout)],
459
+ )
460
+ logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
461
+
462
+ # Log on each process the small summary:
463
+ logger.warning(
464
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
465
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
466
+ )
467
+ # Set the verbosity to info of the Transformers logger (on main process only):
468
+ if is_main_process(training_args.local_rank):
469
+ transformers.utils.logging.set_verbosity_info()
470
+ logger.info("Training/evaluation parameters %s", training_args)
471
+
472
+ # Set seed before initializing model.
473
+ set_seed(training_args.seed)
474
+
475
+ # 1. First, let's load the dataset
476
+ raw_datasets = make_dataset(seed=training_args.seed)
477
+
478
+ if training_args.do_train:
479
+ if data_args.audio_column_name not in raw_datasets["train"].column_names:
480
+ raise ValueError(
481
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
482
+ "Make sure to set `--audio_column_name` to the correct audio column - one of "
483
+ f"{', '.join(raw_datasets['train'].column_names)}."
484
+ )
485
+
486
+ if data_args.text_column_name not in raw_datasets["train"].column_names:
487
+ raise ValueError(
488
+ f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
489
+ "Make sure to set `--text_column_name` to the correct text column - one of "
490
+ f"{', '.join(raw_datasets['train'].column_names)}."
491
+ )
492
+
493
+ if data_args.max_train_samples is not None:
494
+ raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
495
+
496
+ if training_args.do_eval:
497
+ if data_args.max_eval_samples is not None:
498
+ raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
499
+
500
+ # 2. We remove some special characters from the datasets
501
+ # that make training complicated and do not help in transcribing the speech
502
+ # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
503
+ # that could be easily picked up by the model
504
+ # chars_to_ignore_regex = (
505
+ # f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
506
+ # )
507
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\'\–\_\\\+\#\/]'
508
+
509
+ text_column_name = data_args.text_column_name
510
+
511
+ def remove_special_characters(batch):
512
+ if chars_to_ignore_regex is not None:
513
+ batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[text_column_name]).lower() + " "
514
+ else:
515
+ batch["target_text"] = batch[text_column_name].lower() + " "
516
+ return batch
517
+
518
+ with training_args.main_process_first(desc="dataset map special characters removal"):
519
+ raw_datasets = raw_datasets.map(
520
+ remove_special_characters,
521
+ remove_columns=[text_column_name],
522
+ desc="remove special characters from datasets",
523
+ )
524
+
525
+ # save special tokens for tokenizer
526
+ word_delimiter_token = data_args.word_delimiter_token
527
+ unk_token = data_args.unk_token
528
+ pad_token = data_args.pad_token
529
+
530
+ # 3. Next, let's load the config as we might need it to create
531
+ # the tokenizer
532
+ # load config
533
+ config = AutoConfig.from_pretrained(
534
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
535
+ )
536
+
537
+ # 4. Next, if no tokenizer file is defined,
538
+ # we create the vocabulary of the model by extracting all unique characters from
539
+ # the training and evaluation datasets
540
+ # We need to make sure that only first rank saves vocabulary
541
+ # make sure all processes wait until vocab is created
542
+ tokenizer_name_or_path = model_args.tokenizer_name_or_path
543
+ tokenizer_kwargs = {}
544
+ if tokenizer_name_or_path is None:
545
+ # save vocab in training output dir
546
+ tokenizer_name_or_path = training_args.output_dir
547
+
548
+ vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
549
+
550
+ with training_args.main_process_first():
551
+ if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
552
+ os.remove(vocab_file)
553
+
554
+ with training_args.main_process_first(desc="dataset map vocabulary creation"):
555
+ if not os.path.isfile(vocab_file):
556
+ os.makedirs(tokenizer_name_or_path, exist_ok=True)
557
+ vocab_dict = create_vocabulary_from_data(
558
+ raw_datasets,
559
+ word_delimiter_token=word_delimiter_token,
560
+ unk_token=unk_token,
561
+ pad_token=pad_token,
562
+ )
563
+
564
+ # save vocab dict to be loaded into tokenizer
565
+ with open(vocab_file, "w") as file:
566
+ json.dump(vocab_dict, file)
567
+
568
+ # if tokenizer has just been created
569
+ # it is defined by `tokenizer_class` if present in config else by `model_type`
570
+ tokenizer_kwargs = {
571
+ "config": config if config.tokenizer_class is not None else None,
572
+ "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
573
+ "unk_token": unk_token,
574
+ "pad_token": pad_token,
575
+ "word_delimiter_token": word_delimiter_token,
576
+ }
577
+
578
+ # 5. Now we can instantiate the feature extractor, tokenizer and model
579
+ # Note for distributed training, the .from_pretrained methods guarantee that only
580
+ # one local process can concurrently download model & vocab.
581
+
582
+ # load feature_extractor and tokenizer
583
+ tokenizer = AutoTokenizer.from_pretrained(
584
+ tokenizer_name_or_path,
585
+ use_auth_token=data_args.use_auth_token,
586
+ **tokenizer_kwargs,
587
+ )
588
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
589
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
590
+ )
591
+
592
+ # adapt config
593
+ config.update(
594
+ {
595
+ "feat_proj_dropout": model_args.feat_proj_dropout,
596
+ "attention_dropout": model_args.attention_dropout,
597
+ "hidden_dropout": model_args.hidden_dropout,
598
+ "final_dropout": model_args.final_dropout,
599
+ "mask_time_prob": model_args.mask_time_prob,
600
+ "mask_time_length": model_args.mask_time_length,
601
+ "mask_feature_prob": model_args.mask_feature_prob,
602
+ "mask_feature_length": model_args.mask_feature_length,
603
+ "gradient_checkpointing": training_args.gradient_checkpointing,
604
+ "layerdrop": model_args.layerdrop,
605
+ "ctc_loss_reduction": model_args.ctc_loss_reduction,
606
+ "ctc_zero_infinity": model_args.ctc_zero_infinity,
607
+ "pad_token_id": tokenizer.pad_token_id,
608
+ "vocab_size": len(tokenizer),
609
+ "activation_dropout": model_args.activation_dropout,
610
+ }
611
+ )
612
+
613
+ # create model
614
+ model = AutoModelForCTC.from_pretrained(
615
+ model_args.model_name_or_path,
616
+ cache_dir=model_args.cache_dir,
617
+ config=config,
618
+ use_auth_token=data_args.use_auth_token,
619
+ )
620
+
621
+ # freeze encoder
622
+ if model_args.freeze_feature_encoder:
623
+ model.freeze_feature_encoder()
624
+
625
+ # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
626
+ # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
627
+ # so that we just need to set the correct target sampling rate and normalize the input
628
+ # via the `feature_extractor`
629
+
630
+ # make sure that dataset decodes audio with correct sampling rate
631
+ dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
632
+ if dataset_sampling_rate != feature_extractor.sampling_rate:
633
+ raw_datasets = raw_datasets.cast_column(
634
+ data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
635
+ )
636
+
637
+ # derive max & min input length for sample rate & max duration
638
+ max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
639
+ min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
640
+ audio_column_name = data_args.audio_column_name
641
+ num_workers = data_args.preprocessing_num_workers
642
+
643
+ # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
644
+ phoneme_language = data_args.phoneme_language
645
+
646
+ # Preprocessing the datasets.
647
+ # We need to read the audio files as arrays and tokenize the targets.
648
+ def prepare_dataset(batch):
649
+ # load audio
650
+ sample = batch[audio_column_name]
651
+
652
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
653
+ batch["input_values"] = inputs.input_values[0]
654
+ batch["input_length"] = len(batch["input_values"])
655
+
656
+ # encode targets
657
+ additional_kwargs = {}
658
+ if phoneme_language is not None:
659
+ additional_kwargs["phonemizer_lang"] = phoneme_language
660
+
661
+ batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
662
+ return batch
663
+
664
+ with training_args.main_process_first(desc="dataset map preprocessing"):
665
+ vectorized_datasets = raw_datasets.map(
666
+ prepare_dataset,
667
+ remove_columns=next(iter(raw_datasets.values())).column_names,
668
+ num_proc=num_workers,
669
+ desc="preprocess datasets",
670
+ )
671
+
672
+ def is_audio_in_length_range(length):
673
+ return length > min_input_length and length < max_input_length
674
+
675
+ # filter data that is shorter than min_input_length
676
+ vectorized_datasets = vectorized_datasets.filter(
677
+ is_audio_in_length_range,
678
+ num_proc=num_workers,
679
+ input_columns=["input_length"],
680
+ )
681
+
682
+ # 7. Next, we can prepare the training.
683
+ # Let's use word error rate (WER) as our evaluation metric,
684
+ # instantiate a data collator and the trainer
685
+
686
+ # Define evaluation metrics during training, *i.e.* word error rate, character error rate
687
+ eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
688
+
689
+ # for large datasets it is advised to run the preprocessing on a
690
+ # single machine first with ``args.preprocessing_only`` since there will mostly likely
691
+ # be a timeout when running the script in distributed mode.
692
+ # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
693
+ # cached dataset
694
+ if data_args.preprocessing_only:
695
+ logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
696
+ return
697
+
698
+ def compute_metrics(pred):
699
+ pred_logits = pred.predictions
700
+ pred_ids = np.argmax(pred_logits, axis=-1)
701
+
702
+ pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
703
+
704
+ pred_str = tokenizer.batch_decode(pred_ids)
705
+ # we do not want to group tokens when computing the metrics
706
+ label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
707
+
708
+ metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
709
+
710
+ return metrics
711
+
712
+ # Now save everything to be able to create a single processor later
713
+ if is_main_process(training_args.local_rank):
714
+ # save feature extractor, tokenizer and config
715
+ feature_extractor.save_pretrained(training_args.output_dir)
716
+ tokenizer.save_pretrained(training_args.output_dir)
717
+ config.save_pretrained(training_args.output_dir)
718
+
719
+ try:
720
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
721
+ except (OSError, KeyError):
722
+ warnings.warn(
723
+ "Loading a processor from a feature extractor config that does not"
724
+ " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
725
+ " attribute to your `preprocessor_config.json` file to suppress this warning: "
726
+ " `'processor_class': 'Wav2Vec2Processor'`",
727
+ FutureWarning,
728
+ )
729
+ processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
730
+
731
+ # Instantiate custom data collator
732
+ data_collator = DataCollatorCTCWithPadding(processor=processor)
733
+
734
+ # Initialize Trainer
735
+ trainer = Trainer(
736
+ model=model,
737
+ data_collator=data_collator,
738
+ args=training_args,
739
+ compute_metrics=compute_metrics,
740
+ train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
741
+ eval_dataset=vectorized_datasets["validation"] if training_args.do_eval else None,
742
+ tokenizer=feature_extractor,
743
+ )
744
+
745
+ # 8. Finally, we can start training
746
+
747
+ # Training
748
+ if training_args.do_train:
749
+
750
+ # use last checkpoint if exist
751
+ if last_checkpoint is not None:
752
+ checkpoint = last_checkpoint
753
+ elif os.path.isdir(model_args.model_name_or_path):
754
+ checkpoint = model_args.model_name_or_path
755
+ else:
756
+ checkpoint = None
757
+
758
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
759
+ trainer.save_model()
760
+
761
+ metrics = train_result.metrics
762
+ max_train_samples = (
763
+ data_args.max_train_samples
764
+ if data_args.max_train_samples is not None
765
+ else len(vectorized_datasets["train"])
766
+ )
767
+ metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
768
+
769
+ trainer.log_metrics("train", metrics)
770
+ trainer.save_metrics("train", metrics)
771
+ trainer.save_state()
772
+
773
+ # Evaluation
774
+ results = {}
775
+ if training_args.do_eval:
776
+ logger.info("*** Evaluate ***")
777
+ metrics = trainer.evaluate()
778
+ max_eval_samples = (
779
+ data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
780
+ )
781
+ metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
782
+
783
+ trainer.log_metrics("eval", metrics)
784
+ trainer.save_metrics("eval", metrics)
785
+
786
+ # Write model card and (optionally) push to hub
787
+ config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
788
+ kwargs = {
789
+ "finetuned_from": model_args.model_name_or_path,
790
+ "tasks": "speech-recognition",
791
+ "tags": ["automatic-speech-recognition", data_args.dataset_name],
792
+ "dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
793
+ "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
794
+ }
795
+ if "common_voice" in data_args.dataset_name:
796
+ kwargs["language"] = config_name
797
+
798
+ if training_args.push_to_hub:
799
+ trainer.push_to_hub(**kwargs)
800
+ else:
801
+ trainer.create_model_card(**kwargs)
802
+
803
+ return results
804
+
805
+
806
+ if __name__ == "__main__":
807
+ main()