File size: 8,068 Bytes
05c9c5d 6b95e5f 3979b23 bf3841c 6b95e5f 3979b23 6b95e5f 7770a7e 6b95e5f 7770a7e 6b95e5f 7770a7e 6b95e5f 3979b23 bf3841c f6ad795 bf3841c 6b95e5f 7770a7e 3979b23 7770a7e 05c9c5d 6b95e5f bf3841c 6b95e5f 3979b23 6b95e5f 3979b23 bf3841c 3979b23 6b95e5f bf3841c 6b95e5f bf3841c 6b95e5f bf3841c 6b95e5f bf3841c 5a1f10d bf3841c 6b95e5f bf3841c 6b95e5f bf3841c 6b95e5f bf3841c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
---
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- NbAiLab/NCC_S
metrics:
- wer
base_model: openai/whisper-tiny
model-index:
- name: Whisper Tiny Norwegian Bokmål
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: NbAiLab/NCC_S
type: NbAiLab/NCC_S
config: 'no'
split: validation
args: 'no'
metrics:
- type: wer
value: 24.878197320341048
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Tiny Norwegian Bokmål
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the NbAiLab/NCC_S dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5100
- Wer: 24.8782
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 256
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 1000
- training_steps: 100000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:------:|:---------------:|:-------:|
| 1.8819 | 0.01 | 1000 | 1.1869 | 61.9671 |
| 1.6425 | 0.02 | 2000 | 0.9991 | 53.6541 |
| 1.548 | 0.03 | 3000 | 0.9147 | 50.2132 |
| 1.4636 | 0.04 | 4000 | 0.8605 | 47.0767 |
| 1.4113 | 0.05 | 5000 | 0.8253 | 45.7369 |
| 1.3484 | 0.01 | 6000 | 0.7946 | 43.4531 |
| 1.3127 | 0.02 | 7000 | 0.7740 | 42.2655 |
| 1.2994 | 0.03 | 8000 | 0.7551 | 40.8952 |
| 1.265 | 0.04 | 9000 | 0.7378 | 39.8599 |
| 1.2458 | 0.05 | 10000 | 0.7257 | 39.8904 |
| 1.2257 | 0.06 | 11000 | 0.7114 | 39.7990 |
| 1.2126 | 0.07 | 12000 | 0.6972 | 37.8806 |
| 1.1971 | 0.08 | 13000 | 0.6871 | 37.3021 |
| 1.1786 | 1.01 | 14000 | 0.6786 | 37.4239 |
| 1.1486 | 1.02 | 15000 | 0.6703 | 36.9976 |
| 1.1505 | 1.03 | 16000 | 0.6647 | 36.3581 |
| 1.1238 | 1.04 | 17000 | 0.6559 | 36.3886 |
| 1.1184 | 1.05 | 18000 | 0.6509 | 36.5104 |
| 1.115 | 1.06 | 19000 | 0.6452 | 35.9927 |
| 1.1013 | 1.07 | 20000 | 0.6382 | 34.5006 |
| 1.0969 | 1.08 | 21000 | 0.6331 | 34.3484 |
| 1.0784 | 2.0 | 22000 | 0.6304 | 34.2875 |
| 1.0774 | 2.01 | 23000 | 0.6249 | 34.1048 |
| 1.0719 | 2.02 | 24000 | 0.6194 | 33.8307 |
| 1.0638 | 2.03 | 25000 | 0.6158 | 32.9781 |
| 1.0592 | 2.04 | 26000 | 0.6105 | 32.6431 |
| 1.0493 | 2.05 | 27000 | 0.6041 | 32.7345 |
| 1.047 | 2.06 | 28000 | 0.6040 | 32.7649 |
| 1.0323 | 2.07 | 29000 | 0.5984 | 31.6078 |
| 1.0189 | 3.0 | 30000 | 0.5957 | 31.3033 |
| 1.0078 | 3.01 | 31000 | 0.5924 | 31.4251 |
| 1.0146 | 3.02 | 32000 | 0.5940 | 31.3033 |
| 1.0128 | 3.03 | 33000 | 0.5892 | 31.0292 |
| 1.0025 | 3.04 | 34000 | 0.5873 | 31.1815 |
| 0.999 | 3.05 | 35000 | 0.5838 | 30.6334 |
| 1.0045 | 3.06 | 36000 | 0.5799 | 30.4202 |
| 1.0005 | 3.07 | 37000 | 0.5770 | 30.1766 |
| 1.0017 | 3.08 | 38000 | 0.5733 | 29.6590 |
| 0.9878 | 4.01 | 39000 | 0.5745 | 30.2680 |
| 0.9854 | 4.02 | 40000 | 0.5720 | 30.0548 |
| 0.9624 | 4.03 | 41000 | 0.5703 | 29.5981 |
| 0.9639 | 4.04 | 42000 | 0.5681 | 29.5067 |
| 0.9569 | 4.05 | 43000 | 0.5679 | 29.6285 |
| 0.9682 | 4.06 | 44000 | 0.5643 | 29.5676 |
| 0.9539 | 4.07 | 45000 | 0.5601 | 29.5676 |
| 0.946 | 4.08 | 46000 | 0.5562 | 29.7199 |
| 0.9429 | 5.01 | 47000 | 0.5592 | 29.2935 |
| 0.9462 | 5.02 | 48000 | 0.5540 | 29.0804 |
| 0.9312 | 5.03 | 49000 | 0.5535 | 29.2935 |
| 0.9462 | 5.04 | 50000 | 0.5536 | 28.6845 |
| 0.922 | 5.05 | 51000 | 0.5539 | 28.7150 |
| 0.9253 | 5.06 | 52000 | 0.5510 | 28.8368 |
| 0.9065 | 0.01 | 53000 | 0.5493 | 28.5932 |
| 0.9096 | 0.02 | 54000 | 0.5490 | 28.5018 |
| 0.9329 | 0.03 | 55000 | 0.5483 | 28.2887 |
| 0.9181 | 0.04 | 56000 | 0.5471 | 27.9842 |
| 0.914 | 0.05 | 57000 | 0.5457 | 28.4105 |
| 0.9149 | 0.06 | 58000 | 0.5449 | 27.5883 |
| 0.9092 | 0.07 | 59000 | 0.5405 | 27.8319 |
| 0.9101 | 0.08 | 60000 | 0.5402 | 27.3447 |
| 0.9046 | 1.01 | 61000 | 0.5374 | 27.5579 |
| 0.8917 | 1.02 | 62000 | 0.5390 | 27.7406 |
| 0.8993 | 1.03 | 63000 | 0.5386 | 27.4056 |
| 0.8875 | 1.04 | 64000 | 0.5361 | 26.8575 |
| 0.8892 | 1.05 | 65000 | 0.5358 | 27.3447 |
| 0.8929 | 1.06 | 66000 | 0.5346 | 26.7357 |
| 0.8703 | 0.01 | 67000 | 0.5332 | 26.8270 |
| 0.8709 | 0.02 | 68000 | 0.5336 | 26.7052 |
| 0.8917 | 0.03 | 69000 | 0.5329 | 27.0706 |
| 0.8867 | 0.04 | 70000 | 0.5323 | 26.3398 |
| 0.8778 | 0.05 | 71000 | 0.5315 | 27.2838 |
| 0.8757 | 0.06 | 72000 | 0.5317 | 26.2485 |
| 0.8726 | 0.07 | 73000 | 0.5269 | 26.6443 |
| 0.8792 | 0.08 | 74000 | 0.5268 | 26.1571 |
| 0.8706 | 1.01 | 75000 | 0.5247 | 26.1571 |
| 0.8585 | 1.02 | 76000 | 0.5265 | 26.3703 |
| 0.8659 | 1.03 | 77000 | 0.5262 | 26.7357 |
| 0.8551 | 1.04 | 78000 | 0.5249 | 26.0658 |
| 0.8572 | 1.05 | 79000 | 0.5249 | 26.2789 |
| 0.8612 | 1.06 | 80000 | 0.5235 | 25.7613 |
| 0.8598 | 1.07 | 81000 | 0.5208 | 25.7004 |
| 0.8686 | 1.08 | 82000 | 0.5214 | 25.7004 |
| 0.8503 | 2.0 | 83000 | 0.5214 | 25.7004 |
| 0.8545 | 2.01 | 84000 | 0.5215 | 28.2278 |
| 0.8594 | 2.02 | 85000 | 0.5186 | 25.6699 |
| 0.86 | 2.03 | 86000 | 0.5196 | 25.5786 |
| 0.8514 | 2.04 | 87000 | 0.5203 | 25.1827 |
| 0.8505 | 2.05 | 88000 | 0.5164 | 28.0146 |
| 0.8512 | 2.06 | 89000 | 0.5174 | 25.0914 |
| 0.8495 | 2.07 | 90000 | 0.5141 | 25.5481 |
| 0.8381 | 3.0 | 91000 | 0.5130 | 24.9695 |
| 0.8253 | 3.01 | 92000 | 0.5147 | 25.5786 |
| 0.8387 | 3.02 | 93000 | 0.5168 | 24.9086 |
| 0.8425 | 3.03 | 94000 | 0.5135 | 25.2436 |
| 0.8339 | 3.04 | 95000 | 0.5162 | 25.6699 |
| 0.8402 | 3.05 | 96000 | 0.5147 | 25.7308 |
| 0.8396 | 3.06 | 97000 | 0.5143 | 25.6699 |
| 0.8432 | 3.07 | 98000 | 0.5100 | 24.8782 |
| 0.844 | 3.08 | 99000 | 0.5100 | 25.0609 |
| 0.8333 | 4.01 | 100000 | 0.5128 | 24.9695 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|