--- library_name: transformers tags: - government - conversational - question-answering - dutch - geitje license: apache-2.0 datasets: - Nelis5174473/Dutch-QA-Pairs-Rijksoverheid language: - nl pipeline_tag: text-generation ---

GovLLM Ultra banner

GovLLM-7B-ultra

A question answering model about the Dutch Government.
## Model description This model is a fine-tuned version of the Dutch conversational model [BramVanroy/GEITje-7B-ULTRA](https://huggingface.co/BramVanroy/GEITje-7B-ultra) on a [Dutch question-answer pair dataset](https://huggingface.co/datasets/Nelis5174473/Dutch-QA-Pairs-Rijksoverheid) of the Dutch Government. This is a Dutch question/answer model ultimately based on Mistral and fine-tuned with SFT and LoRA. The training with 3 epochs took almost 2 hours and was run on an Nvidia A100 (40GB VRAM). # Usage with Inference Endpoints (Dedicated) ```python import requests API_URL = "https://your-own-endpoint.us-east-1.aws.endpoints.huggingface.cloud" headers = {"Authorization": "Bearer hf_your_own_token"} def query(payload): response = requests.post(API_URL, headers=headers, json=payload) return response.json() output = query({ "inputs": "Geeft de overheid subsidie aan bedrijven?" }) # print generated answer print(output[0]['generated_text']) ``` ## Training hyperparameters The following hyperparameters were used during training: - block_size: 1024, - model_max_length: 2048, - padding: right, - mixed_precision: fp16, - learning rate (lr): 0.00003, - epochs: 3, - batch_size: 2, - optimizer: adamw_torch, - schedular: linear, - quantization: int8, - peft: true, - lora_r: 16, - lora_alpha: 16, - lora_dropout: 0.05 ### Training results | Epoch | Loss | Grad_norm | learning_rate | step | |:------:|---------:|:----------:|:-------------:|:--------:| | 0.14 | 1.3183 | 0.6038 | 1.3888e-05 | 25/540 | | 0.42 | 1.0220 | 0.4180 | 2.8765e-05 | 75/540 | | 0.69 | 0.9251 | 0.4119 | 2.56793-05 | 125/540 | | 0.97 | 0.9260 | 0.4682 | 2.2592e-05 | 175/540 | | 1.25 | 0.8586 | 0.5338 | 1.9506e-05 | 225/540 | | 1.53 | 0.8767 | 0.6359 | 1.6420e-05 | 275/540 | | 1.80 | 0.8721 | 0.6137 | 1.3333e-05 | 325/540 | | 2.08 | 0.8469 | 0.7310 | 1.0247e-05 | 375/540 | | 2.36 | 0.8324 | 0.7945 | 7.1605e-05 | 425/540 | | 2.64 | 0.8170 | 0.8522 | 4.0741e-05 | 475/540 | | 2.91 | 0.8185 | 0.8562 | 9.8765e-05 | 525/540 |