Commit
·
222b581
1
Parent(s):
01f7105
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- marsyas/gtzan
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: distilhubert-finetuned-gtzan
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Audio Classification
|
14 |
+
type: audio-classification
|
15 |
+
dataset:
|
16 |
+
name: GTZAN
|
17 |
+
type: marsyas/gtzan
|
18 |
+
config: all
|
19 |
+
split: train
|
20 |
+
args: all
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.785
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# distilhubert-finetuned-gtzan
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 1.0228
|
35 |
+
- Accuracy: 0.785
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 5e-05
|
55 |
+
- train_batch_size: 8
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- lr_scheduler_warmup_ratio: 0.1
|
61 |
+
- num_epochs: 20
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| 2.1613 | 1.0 | 100 | 2.1437 | 0.36 |
|
68 |
+
| 1.6412 | 2.0 | 200 | 1.4637 | 0.615 |
|
69 |
+
| 1.1977 | 3.0 | 300 | 1.1439 | 0.64 |
|
70 |
+
| 0.9222 | 4.0 | 400 | 0.9581 | 0.73 |
|
71 |
+
| 0.7547 | 5.0 | 500 | 0.8533 | 0.705 |
|
72 |
+
| 0.4407 | 6.0 | 600 | 0.7473 | 0.785 |
|
73 |
+
| 0.2775 | 7.0 | 700 | 0.8627 | 0.745 |
|
74 |
+
| 0.2278 | 8.0 | 800 | 0.7299 | 0.78 |
|
75 |
+
| 0.0881 | 9.0 | 900 | 0.7966 | 0.77 |
|
76 |
+
| 0.0358 | 10.0 | 1000 | 0.8457 | 0.79 |
|
77 |
+
| 0.0192 | 11.0 | 1100 | 0.9054 | 0.775 |
|
78 |
+
| 0.0197 | 12.0 | 1200 | 0.9318 | 0.775 |
|
79 |
+
| 0.0075 | 13.0 | 1300 | 0.9652 | 0.775 |
|
80 |
+
| 0.0058 | 14.0 | 1400 | 0.9544 | 0.785 |
|
81 |
+
| 0.0744 | 15.0 | 1500 | 0.9989 | 0.775 |
|
82 |
+
| 0.0043 | 16.0 | 1600 | 0.9860 | 0.785 |
|
83 |
+
| 0.0039 | 17.0 | 1700 | 1.0023 | 0.79 |
|
84 |
+
| 0.0037 | 18.0 | 1800 | 0.9807 | 0.79 |
|
85 |
+
| 0.0036 | 19.0 | 1900 | 1.0155 | 0.785 |
|
86 |
+
| 0.0034 | 20.0 | 2000 | 1.0228 | 0.785 |
|
87 |
+
|
88 |
+
|
89 |
+
### Framework versions
|
90 |
+
|
91 |
+
- Transformers 4.31.0.dev0
|
92 |
+
- Pytorch 2.0.1+cu117
|
93 |
+
- Datasets 2.13.1
|
94 |
+
- Tokenizers 0.13.3
|