NemesisAlm commited on
Commit
222b581
·
1 Parent(s): 01f7105

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +94 -0
README.md ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - marsyas/gtzan
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: distilhubert-finetuned-gtzan
11
+ results:
12
+ - task:
13
+ name: Audio Classification
14
+ type: audio-classification
15
+ dataset:
16
+ name: GTZAN
17
+ type: marsyas/gtzan
18
+ config: all
19
+ split: train
20
+ args: all
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.785
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # distilhubert-finetuned-gtzan
31
+
32
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 1.0228
35
+ - Accuracy: 0.785
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 8
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - lr_scheduler_warmup_ratio: 0.1
61
+ - num_epochs: 20
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
66
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
67
+ | 2.1613 | 1.0 | 100 | 2.1437 | 0.36 |
68
+ | 1.6412 | 2.0 | 200 | 1.4637 | 0.615 |
69
+ | 1.1977 | 3.0 | 300 | 1.1439 | 0.64 |
70
+ | 0.9222 | 4.0 | 400 | 0.9581 | 0.73 |
71
+ | 0.7547 | 5.0 | 500 | 0.8533 | 0.705 |
72
+ | 0.4407 | 6.0 | 600 | 0.7473 | 0.785 |
73
+ | 0.2775 | 7.0 | 700 | 0.8627 | 0.745 |
74
+ | 0.2278 | 8.0 | 800 | 0.7299 | 0.78 |
75
+ | 0.0881 | 9.0 | 900 | 0.7966 | 0.77 |
76
+ | 0.0358 | 10.0 | 1000 | 0.8457 | 0.79 |
77
+ | 0.0192 | 11.0 | 1100 | 0.9054 | 0.775 |
78
+ | 0.0197 | 12.0 | 1200 | 0.9318 | 0.775 |
79
+ | 0.0075 | 13.0 | 1300 | 0.9652 | 0.775 |
80
+ | 0.0058 | 14.0 | 1400 | 0.9544 | 0.785 |
81
+ | 0.0744 | 15.0 | 1500 | 0.9989 | 0.775 |
82
+ | 0.0043 | 16.0 | 1600 | 0.9860 | 0.785 |
83
+ | 0.0039 | 17.0 | 1700 | 1.0023 | 0.79 |
84
+ | 0.0037 | 18.0 | 1800 | 0.9807 | 0.79 |
85
+ | 0.0036 | 19.0 | 1900 | 1.0155 | 0.785 |
86
+ | 0.0034 | 20.0 | 2000 | 1.0228 | 0.785 |
87
+
88
+
89
+ ### Framework versions
90
+
91
+ - Transformers 4.31.0.dev0
92
+ - Pytorch 2.0.1+cu117
93
+ - Datasets 2.13.1
94
+ - Tokenizers 0.13.3