--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.785 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.0228 - Accuracy: 0.785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.1613 | 1.0 | 100 | 2.1437 | 0.36 | | 1.6412 | 2.0 | 200 | 1.4637 | 0.615 | | 1.1977 | 3.0 | 300 | 1.1439 | 0.64 | | 0.9222 | 4.0 | 400 | 0.9581 | 0.73 | | 0.7547 | 5.0 | 500 | 0.8533 | 0.705 | | 0.4407 | 6.0 | 600 | 0.7473 | 0.785 | | 0.2775 | 7.0 | 700 | 0.8627 | 0.745 | | 0.2278 | 8.0 | 800 | 0.7299 | 0.78 | | 0.0881 | 9.0 | 900 | 0.7966 | 0.77 | | 0.0358 | 10.0 | 1000 | 0.8457 | 0.79 | | 0.0192 | 11.0 | 1100 | 0.9054 | 0.775 | | 0.0197 | 12.0 | 1200 | 0.9318 | 0.775 | | 0.0075 | 13.0 | 1300 | 0.9652 | 0.775 | | 0.0058 | 14.0 | 1400 | 0.9544 | 0.785 | | 0.0744 | 15.0 | 1500 | 0.9989 | 0.775 | | 0.0043 | 16.0 | 1600 | 0.9860 | 0.785 | | 0.0039 | 17.0 | 1700 | 1.0023 | 0.79 | | 0.0037 | 18.0 | 1800 | 0.9807 | 0.79 | | 0.0036 | 19.0 | 1900 | 1.0155 | 0.785 | | 0.0034 | 20.0 | 2000 | 1.0228 | 0.785 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3