Nessrine9 commited on
Commit
0604176
1 Parent(s): 8c3981d

Finetuned model on SNLI

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,468 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L12-v2
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - pearson_cosine
6
+ - spearman_cosine
7
+ - pearson_manhattan
8
+ - spearman_manhattan
9
+ - pearson_euclidean
10
+ - spearman_euclidean
11
+ - pearson_dot
12
+ - spearman_dot
13
+ - pearson_max
14
+ - spearman_max
15
+ pipeline_tag: sentence-similarity
16
+ tags:
17
+ - sentence-transformers
18
+ - sentence-similarity
19
+ - feature-extraction
20
+ - generated_from_trainer
21
+ - dataset_size:100000
22
+ - loss:CosineSimilarityLoss
23
+ widget:
24
+ - source_sentence: A woman wearing a yellow shirt is holding a plate which contains
25
+ a piece of cake.
26
+ sentences:
27
+ - The woman in the yellow shirt might have cut the cake and placed it on the plate.
28
+ - Male bicyclists compete in the Tour de France.
29
+ - The man is walking
30
+ - source_sentence: People gather and talk in the street.
31
+ sentences:
32
+ - Club goers outside discussing the police raid.
33
+ - a woman is leaning on a skateboard
34
+ - There are many people singing.
35
+ - source_sentence: A child sliding face first down a metal tube
36
+ sentences:
37
+ - A man with a red shirt is bowling with his 2 sons.
38
+ - The child is sliding face first
39
+ - There is a girl in a dress.
40
+ - source_sentence: A man walking a gray poodle is walking past a billboard with a
41
+ cow on it.
42
+ sentences:
43
+ - A house build with wooden stairs and the family is enjoying sitting on them
44
+ - A woman is playing checkers.
45
+ - The man is walking his grey cat.
46
+ - source_sentence: A man fishing in a pointy blue boat on a river lined with palm
47
+ trees.
48
+ sentences:
49
+ - Labrador Retrievers are energetic dogs that will play catch for hours.
50
+ - A man rubs his bald head.
51
+ - The man is with friends.
52
+ model-index:
53
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
54
+ results:
55
+ - task:
56
+ type: semantic-similarity
57
+ name: Semantic Similarity
58
+ dataset:
59
+ name: snli dev
60
+ type: snli-dev
61
+ metrics:
62
+ - type: pearson_cosine
63
+ value: 0.5002872232214081
64
+ name: Pearson Cosine
65
+ - type: spearman_cosine
66
+ value: 0.49187589438593304
67
+ name: Spearman Cosine
68
+ - type: pearson_manhattan
69
+ value: 0.47522303163337404
70
+ name: Pearson Manhattan
71
+ - type: spearman_manhattan
72
+ value: 0.49169237941097593
73
+ name: Spearman Manhattan
74
+ - type: pearson_euclidean
75
+ value: 0.47599896939605724
76
+ name: Pearson Euclidean
77
+ - type: spearman_euclidean
78
+ value: 0.49187587264847454
79
+ name: Spearman Euclidean
80
+ - type: pearson_dot
81
+ value: 0.5002872256206143
82
+ name: Pearson Dot
83
+ - type: spearman_dot
84
+ value: 0.49187604689169206
85
+ name: Spearman Dot
86
+ - type: pearson_max
87
+ value: 0.5002872256206143
88
+ name: Pearson Max
89
+ - type: spearman_max
90
+ value: 0.49187604689169206
91
+ name: Spearman Max
92
+ ---
93
+
94
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
95
+
96
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
97
+
98
+ ## Model Details
99
+
100
+ ### Model Description
101
+ - **Model Type:** Sentence Transformer
102
+ - **Base model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) <!-- at revision 30ce63ae64e71b9199b3d2eae9de99f64a26eedc -->
103
+ - **Maximum Sequence Length:** 128 tokens
104
+ - **Output Dimensionality:** 384 tokens
105
+ - **Similarity Function:** Cosine Similarity
106
+ <!-- - **Training Dataset:** Unknown -->
107
+ <!-- - **Language:** Unknown -->
108
+ <!-- - **License:** Unknown -->
109
+
110
+ ### Model Sources
111
+
112
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
113
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
114
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
115
+
116
+ ### Full Model Architecture
117
+
118
+ ```
119
+ SentenceTransformer(
120
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
121
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
122
+ (2): Normalize()
123
+ )
124
+ ```
125
+
126
+ ## Usage
127
+
128
+ ### Direct Usage (Sentence Transformers)
129
+
130
+ First install the Sentence Transformers library:
131
+
132
+ ```bash
133
+ pip install -U sentence-transformers
134
+ ```
135
+
136
+ Then you can load this model and run inference.
137
+ ```python
138
+ from sentence_transformers import SentenceTransformer
139
+
140
+ # Download from the 🤗 Hub
141
+ model = SentenceTransformer("Nessrine9/Finetune2-MiniLM-L12-v2")
142
+ # Run inference
143
+ sentences = [
144
+ 'A man fishing in a pointy blue boat on a river lined with palm trees.',
145
+ 'The man is with friends.',
146
+ 'A man rubs his bald head.',
147
+ ]
148
+ embeddings = model.encode(sentences)
149
+ print(embeddings.shape)
150
+ # [3, 384]
151
+
152
+ # Get the similarity scores for the embeddings
153
+ similarities = model.similarity(embeddings, embeddings)
154
+ print(similarities.shape)
155
+ # [3, 3]
156
+ ```
157
+
158
+ <!--
159
+ ### Direct Usage (Transformers)
160
+
161
+ <details><summary>Click to see the direct usage in Transformers</summary>
162
+
163
+ </details>
164
+ -->
165
+
166
+ <!--
167
+ ### Downstream Usage (Sentence Transformers)
168
+
169
+ You can finetune this model on your own dataset.
170
+
171
+ <details><summary>Click to expand</summary>
172
+
173
+ </details>
174
+ -->
175
+
176
+ <!--
177
+ ### Out-of-Scope Use
178
+
179
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
180
+ -->
181
+
182
+ ## Evaluation
183
+
184
+ ### Metrics
185
+
186
+ #### Semantic Similarity
187
+ * Dataset: `snli-dev`
188
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
189
+
190
+ | Metric | Value |
191
+ |:-------------------|:-----------|
192
+ | pearson_cosine | 0.5003 |
193
+ | spearman_cosine | 0.4919 |
194
+ | pearson_manhattan | 0.4752 |
195
+ | spearman_manhattan | 0.4917 |
196
+ | pearson_euclidean | 0.476 |
197
+ | spearman_euclidean | 0.4919 |
198
+ | pearson_dot | 0.5003 |
199
+ | spearman_dot | 0.4919 |
200
+ | pearson_max | 0.5003 |
201
+ | **spearman_max** | **0.4919** |
202
+
203
+ <!--
204
+ ## Bias, Risks and Limitations
205
+
206
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
207
+ -->
208
+
209
+ <!--
210
+ ### Recommendations
211
+
212
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
213
+ -->
214
+
215
+ ## Training Details
216
+
217
+ ### Training Dataset
218
+
219
+ #### Unnamed Dataset
220
+
221
+
222
+ * Size: 100,000 training samples
223
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
224
+ * Approximate statistics based on the first 1000 samples:
225
+ | | sentence_0 | sentence_1 | label |
226
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
227
+ | type | string | string | float |
228
+ | details | <ul><li>min: 4 tokens</li><li>mean: 16.38 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.56 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
229
+ * Samples:
230
+ | sentence_0 | sentence_1 | label |
231
+ |:-------------------------------------------------------------------------------|:------------------------------------------|:-----------------|
232
+ | <code>Three men in an art gallery posing for the camera.</code> | <code>Paintings are nearby.</code> | <code>0.5</code> |
233
+ | <code>A shirtless man wearing a vest walks on a stage with his arms up.</code> | <code>The man is about to perform.</code> | <code>0.5</code> |
234
+ | <code>The man is walking outside near a rocky river.</code> | <code>The man is walking</code> | <code>0.0</code> |
235
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
236
+ ```json
237
+ {
238
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
239
+ }
240
+ ```
241
+
242
+ ### Training Hyperparameters
243
+ #### Non-Default Hyperparameters
244
+
245
+ - `eval_strategy`: steps
246
+ - `per_device_train_batch_size`: 16
247
+ - `per_device_eval_batch_size`: 16
248
+ - `num_train_epochs`: 4
249
+ - `fp16`: True
250
+ - `multi_dataset_batch_sampler`: round_robin
251
+
252
+ #### All Hyperparameters
253
+ <details><summary>Click to expand</summary>
254
+
255
+ - `overwrite_output_dir`: False
256
+ - `do_predict`: False
257
+ - `eval_strategy`: steps
258
+ - `prediction_loss_only`: True
259
+ - `per_device_train_batch_size`: 16
260
+ - `per_device_eval_batch_size`: 16
261
+ - `per_gpu_train_batch_size`: None
262
+ - `per_gpu_eval_batch_size`: None
263
+ - `gradient_accumulation_steps`: 1
264
+ - `eval_accumulation_steps`: None
265
+ - `torch_empty_cache_steps`: None
266
+ - `learning_rate`: 5e-05
267
+ - `weight_decay`: 0.0
268
+ - `adam_beta1`: 0.9
269
+ - `adam_beta2`: 0.999
270
+ - `adam_epsilon`: 1e-08
271
+ - `max_grad_norm`: 1
272
+ - `num_train_epochs`: 4
273
+ - `max_steps`: -1
274
+ - `lr_scheduler_type`: linear
275
+ - `lr_scheduler_kwargs`: {}
276
+ - `warmup_ratio`: 0.0
277
+ - `warmup_steps`: 0
278
+ - `log_level`: passive
279
+ - `log_level_replica`: warning
280
+ - `log_on_each_node`: True
281
+ - `logging_nan_inf_filter`: True
282
+ - `save_safetensors`: True
283
+ - `save_on_each_node`: False
284
+ - `save_only_model`: False
285
+ - `restore_callback_states_from_checkpoint`: False
286
+ - `no_cuda`: False
287
+ - `use_cpu`: False
288
+ - `use_mps_device`: False
289
+ - `seed`: 42
290
+ - `data_seed`: None
291
+ - `jit_mode_eval`: False
292
+ - `use_ipex`: False
293
+ - `bf16`: False
294
+ - `fp16`: True
295
+ - `fp16_opt_level`: O1
296
+ - `half_precision_backend`: auto
297
+ - `bf16_full_eval`: False
298
+ - `fp16_full_eval`: False
299
+ - `tf32`: None
300
+ - `local_rank`: 0
301
+ - `ddp_backend`: None
302
+ - `tpu_num_cores`: None
303
+ - `tpu_metrics_debug`: False
304
+ - `debug`: []
305
+ - `dataloader_drop_last`: False
306
+ - `dataloader_num_workers`: 0
307
+ - `dataloader_prefetch_factor`: None
308
+ - `past_index`: -1
309
+ - `disable_tqdm`: False
310
+ - `remove_unused_columns`: True
311
+ - `label_names`: None
312
+ - `load_best_model_at_end`: False
313
+ - `ignore_data_skip`: False
314
+ - `fsdp`: []
315
+ - `fsdp_min_num_params`: 0
316
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
317
+ - `fsdp_transformer_layer_cls_to_wrap`: None
318
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
319
+ - `deepspeed`: None
320
+ - `label_smoothing_factor`: 0.0
321
+ - `optim`: adamw_torch
322
+ - `optim_args`: None
323
+ - `adafactor`: False
324
+ - `group_by_length`: False
325
+ - `length_column_name`: length
326
+ - `ddp_find_unused_parameters`: None
327
+ - `ddp_bucket_cap_mb`: None
328
+ - `ddp_broadcast_buffers`: False
329
+ - `dataloader_pin_memory`: True
330
+ - `dataloader_persistent_workers`: False
331
+ - `skip_memory_metrics`: True
332
+ - `use_legacy_prediction_loop`: False
333
+ - `push_to_hub`: False
334
+ - `resume_from_checkpoint`: None
335
+ - `hub_model_id`: None
336
+ - `hub_strategy`: every_save
337
+ - `hub_private_repo`: False
338
+ - `hub_always_push`: False
339
+ - `gradient_checkpointing`: False
340
+ - `gradient_checkpointing_kwargs`: None
341
+ - `include_inputs_for_metrics`: False
342
+ - `eval_do_concat_batches`: True
343
+ - `fp16_backend`: auto
344
+ - `push_to_hub_model_id`: None
345
+ - `push_to_hub_organization`: None
346
+ - `mp_parameters`:
347
+ - `auto_find_batch_size`: False
348
+ - `full_determinism`: False
349
+ - `torchdynamo`: None
350
+ - `ray_scope`: last
351
+ - `ddp_timeout`: 1800
352
+ - `torch_compile`: False
353
+ - `torch_compile_backend`: None
354
+ - `torch_compile_mode`: None
355
+ - `dispatch_batches`: None
356
+ - `split_batches`: None
357
+ - `include_tokens_per_second`: False
358
+ - `include_num_input_tokens_seen`: False
359
+ - `neftune_noise_alpha`: None
360
+ - `optim_target_modules`: None
361
+ - `batch_eval_metrics`: False
362
+ - `eval_on_start`: False
363
+ - `eval_use_gather_object`: False
364
+ - `batch_sampler`: batch_sampler
365
+ - `multi_dataset_batch_sampler`: round_robin
366
+
367
+ </details>
368
+
369
+ ### Training Logs
370
+ | Epoch | Step | Training Loss | snli-dev_spearman_max |
371
+ |:------:|:-----:|:-------------:|:---------------------:|
372
+ | 0.08 | 500 | 0.1842 | 0.3333 |
373
+ | 0.16 | 1000 | 0.1489 | 0.3449 |
374
+ | 0.24 | 1500 | 0.1427 | 0.3633 |
375
+ | 0.32 | 2000 | 0.1391 | 0.3854 |
376
+ | 0.4 | 2500 | 0.1401 | 0.4015 |
377
+ | 0.48 | 3000 | 0.139 | 0.3982 |
378
+ | 0.56 | 3500 | 0.1352 | 0.4327 |
379
+ | 0.64 | 4000 | 0.1319 | 0.4262 |
380
+ | 0.72 | 4500 | 0.1336 | 0.4034 |
381
+ | 0.8 | 5000 | 0.1321 | 0.4021 |
382
+ | 0.88 | 5500 | 0.1309 | 0.4294 |
383
+ | 0.96 | 6000 | 0.1271 | 0.4198 |
384
+ | 1.0 | 6250 | - | 0.4317 |
385
+ | 1.04 | 6500 | 0.132 | 0.4445 |
386
+ | 1.12 | 7000 | 0.1296 | 0.4509 |
387
+ | 1.2 | 7500 | 0.1236 | 0.4559 |
388
+ | 1.28 | 8000 | 0.1257 | 0.4542 |
389
+ | 1.3600 | 8500 | 0.1236 | 0.4507 |
390
+ | 1.44 | 9000 | 0.1277 | 0.4540 |
391
+ | 1.52 | 9500 | 0.1249 | 0.4664 |
392
+ | 1.6 | 10000 | 0.1208 | 0.4418 |
393
+ | 1.6800 | 10500 | 0.1228 | 0.4457 |
394
+ | 1.76 | 11000 | 0.1212 | 0.4222 |
395
+ | 1.8400 | 11500 | 0.1203 | 0.4507 |
396
+ | 1.92 | 12000 | 0.119 | 0.4572 |
397
+ | 2.0 | 12500 | 0.1196 | 0.4667 |
398
+ | 2.08 | 13000 | 0.1194 | 0.4733 |
399
+ | 2.16 | 13500 | 0.1172 | 0.4786 |
400
+ | 2.24 | 14000 | 0.1172 | 0.4765 |
401
+ | 2.32 | 14500 | 0.1145 | 0.4717 |
402
+ | 2.4 | 15000 | 0.1167 | 0.4803 |
403
+ | 2.48 | 15500 | 0.1177 | 0.4678 |
404
+ | 2.56 | 16000 | 0.1162 | 0.4805 |
405
+ | 2.64 | 16500 | 0.1137 | 0.4780 |
406
+ | 2.7200 | 17000 | 0.1153 | 0.4788 |
407
+ | 2.8 | 17500 | 0.115 | 0.4784 |
408
+ | 2.88 | 18000 | 0.1128 | 0.4864 |
409
+ | 2.96 | 18500 | 0.11 | 0.4812 |
410
+ | 3.0 | 18750 | - | 0.4823 |
411
+ | 3.04 | 19000 | 0.1136 | 0.4900 |
412
+ | 3.12 | 19500 | 0.1135 | 0.4897 |
413
+ | 3.2 | 20000 | 0.1094 | 0.4856 |
414
+ | 3.2800 | 20500 | 0.1108 | 0.4889 |
415
+ | 3.36 | 21000 | 0.1083 | 0.4909 |
416
+ | 3.44 | 21500 | 0.1133 | 0.4892 |
417
+ | 3.52 | 22000 | 0.1106 | 0.4910 |
418
+ | 3.6 | 22500 | 0.1079 | 0.4888 |
419
+ | 3.68 | 23000 | 0.1091 | 0.4890 |
420
+ | 3.76 | 23500 | 0.1079 | 0.4822 |
421
+ | 3.84 | 24000 | 0.1087 | 0.4887 |
422
+ | 3.92 | 24500 | 0.1066 | 0.4926 |
423
+ | 4.0 | 25000 | 0.1069 | 0.4919 |
424
+
425
+
426
+ ### Framework Versions
427
+ - Python: 3.10.12
428
+ - Sentence Transformers: 3.2.1
429
+ - Transformers: 4.44.2
430
+ - PyTorch: 2.5.0+cu121
431
+ - Accelerate: 0.34.2
432
+ - Datasets: 3.0.2
433
+ - Tokenizers: 0.19.1
434
+
435
+ ## Citation
436
+
437
+ ### BibTeX
438
+
439
+ #### Sentence Transformers
440
+ ```bibtex
441
+ @inproceedings{reimers-2019-sentence-bert,
442
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
443
+ author = "Reimers, Nils and Gurevych, Iryna",
444
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
445
+ month = "11",
446
+ year = "2019",
447
+ publisher = "Association for Computational Linguistics",
448
+ url = "https://arxiv.org/abs/1908.10084",
449
+ }
450
+ ```
451
+
452
+ <!--
453
+ ## Glossary
454
+
455
+ *Clearly define terms in order to be accessible across audiences.*
456
+ -->
457
+
458
+ <!--
459
+ ## Model Card Authors
460
+
461
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
462
+ -->
463
+
464
+ <!--
465
+ ## Model Card Contact
466
+
467
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
468
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c3e43275822c741d3243587742724e5cbe4b16a938c479d755a6a2de7c1bfad
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 128,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff