---
base_model: sentence-transformers/all-MiniLM-L12-v2
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:100000
- loss:CosineSimilarityLoss
widget:
- source_sentence: A woman wearing a yellow shirt is holding a plate which contains
a piece of cake.
sentences:
- The woman in the yellow shirt might have cut the cake and placed it on the plate.
- Male bicyclists compete in the Tour de France.
- The man is walking
- source_sentence: People gather and talk in the street.
sentences:
- Club goers outside discussing the police raid.
- a woman is leaning on a skateboard
- There are many people singing.
- source_sentence: A child sliding face first down a metal tube
sentences:
- A man with a red shirt is bowling with his 2 sons.
- The child is sliding face first
- There is a girl in a dress.
- source_sentence: A man walking a gray poodle is walking past a billboard with a
cow on it.
sentences:
- A house build with wooden stairs and the family is enjoying sitting on them
- A woman is playing checkers.
- The man is walking his grey cat.
- source_sentence: A man fishing in a pointy blue boat on a river lined with palm
trees.
sentences:
- Labrador Retrievers are energetic dogs that will play catch for hours.
- A man rubs his bald head.
- The man is with friends.
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: snli dev
type: snli-dev
metrics:
- type: pearson_cosine
value: 0.5002872232214081
name: Pearson Cosine
- type: spearman_cosine
value: 0.49187589438593304
name: Spearman Cosine
- type: pearson_manhattan
value: 0.47522303163337404
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.49169237941097593
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.47599896939605724
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.49187587264847454
name: Spearman Euclidean
- type: pearson_dot
value: 0.5002872256206143
name: Pearson Dot
- type: spearman_dot
value: 0.49187604689169206
name: Spearman Dot
- type: pearson_max
value: 0.5002872256206143
name: Pearson Max
- type: spearman_max
value: 0.49187604689169206
name: Spearman Max
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2)
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Nessrine9/Finetune2-MiniLM-L12-v2")
# Run inference
sentences = [
'A man fishing in a pointy blue boat on a river lined with palm trees.',
'The man is with friends.',
'A man rubs his bald head.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `snli-dev`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| pearson_cosine | 0.5003 |
| spearman_cosine | 0.4919 |
| pearson_manhattan | 0.4752 |
| spearman_manhattan | 0.4917 |
| pearson_euclidean | 0.476 |
| spearman_euclidean | 0.4919 |
| pearson_dot | 0.5003 |
| spearman_dot | 0.4919 |
| pearson_max | 0.5003 |
| **spearman_max** | **0.4919** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 100,000 training samples
* Columns: sentence_0
, sentence_1
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
| type | string | string | float |
| details |
Three men in an art gallery posing for the camera.
| Paintings are nearby.
| 0.5
|
| A shirtless man wearing a vest walks on a stage with his arms up.
| The man is about to perform.
| 0.5
|
| The man is walking outside near a rocky river.
| The man is walking
| 0.0
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 4
- `fp16`: True
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters