File size: 5,341 Bytes
ae9f583 04a4be4 ae9f583 750c6d3 ae9f583 750c6d3 ae9f583 750c6d3 ae9f583 750c6d3 ae9f583 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
---
license: cc-by-nc-4.0
base_model: google/gemma-2b
model-index:
- name: Octopus-V2-2B
results: []
tags:
- function calling
- on-device language model
- android
inference: false
space: false
spaces: false
language:
- en
---
# Quantized Octopus V2: On-device language model for super agent
This repo includes two types of quantized models: **GGUF** and **AWQ**, for our Octopus V2 model at [NexaAIDev/Octopus-v2](https://huggingface.co/NexaAIDev/Octopus-v2)
<p align="center" width="100%">
<a><img src="Octopus-logo.jpeg" alt="nexa-octopus" style="width: 40%; min-width: 300px; display: block; margin: auto;"></a>
</p>
# GGUF Qauntization
Run with [Ollama](https://github.com/ollama/ollama)
```bash
ollama run NexaAIDev/octopus-v2-Q4_K_M
```
# AWQ Quantization
Python example:
```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, GemmaForCausalLM
import torch
import time
import numpy as np
def inference(input_text):
tokens = tokenizer(
input_text,
return_tensors='pt'
).input_ids.cuda()
start_time = time.time()
generation_output = model.generate(
tokens,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
max_new_tokens=512
)
end_time = time.time()
res = tokenizer.decode(generation_output[0])
res = res.split(input_text)
latency = end_time - start_time
output_tokens = tokenizer.encode(res)
num_output_tokens = len(output_tokens)
throughput = num_output_tokens / latency
return {"output": res[-1], "latency": latency, "throughput": throughput}
model_id = "path/to/Octopus-v2-AWQ"
model = AutoAWQForCausalLM.from_quantized(model_id, fuse_layers=True,
trust_remote_code=False, safetensors=True)
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=False)
prompts = ["Below is the query from the users, please call the correct function and generate the parameters to call the function.\n\nQuery: Can you take a photo using the back camera and save it to the default location? \n\nResponse:"]
avg_throughput = []
for prompt in prompts:
out = inference(prompt)
avg_throughput.append(out["throughput"])
print("nexa model result:\n", out["output"])
print("avg throughput:", np.mean(avg_throughput))
```
# Quantized GGUF & AWQ Models Benchmark
| Name | Quant method | Bits | Size | Response (t/s) | Use Cases |
| ---------------------- | ------------ | ---- | -------- | -------------- | ----------------------------------- |
| Octopus-v2-AWQ | AWQ | 4 | 3.00 GB | 63.83 | fast, high quality, recommended |
| Octopus-v2-Q2_K.gguf | Q2_K | 2 | 1.16 GB | 57.81 | fast but high loss, not recommended |
| Octopus-v2-Q3_K.gguf | Q3_K | 3 | 1.38 GB | 57.81 | extremely not recommended |
| Octopus-v2-Q3_K_S.gguf | Q3_K_S | 3 | 1.19 GB | 52.13 | extremely not recommended |
| Octopus-v2-Q3_K_M.gguf | Q3_K_M | 3 | 1.38 GB | 58.67 | moderate loss, not very recommended |
| Octopus-v2-Q3_K_L.gguf | Q3_K_L | 3 | 1.47 GB | 56.92 | not very recommended |
| Octopus-v2-Q4_0.gguf | Q4_0 | 4 | 1.55 GB | 68.80 | moderate speed, recommended |
| Octopus-v2-Q4_1.gguf | Q4_1 | 4 | 1.68 GB | 68.09 | moderate speed, recommended |
| Octopus-v2-Q4_K.gguf | Q4_K | 4 | 1.63 GB | 64.70 | moderate speed, recommended |
| Octopus-v2-Q4_K_S.gguf | Q4_K_S | 4 | 1.56 GB | 62.16 | fast and accurate, very recommended |
| Octopus-v2-Q4_K_M.gguf | Q4_K_M | 4 | 1.63 GB | 64.74 | fast, recommended |
| Octopus-v2-Q5_0.gguf | Q5_0 | 5 | 1.80 GB | 64.80 | fast, recommended |
| Octopus-v2-Q5_1.gguf | Q5_1 | 5 | 1.92 GB | 63.42 | very big, prefer Q4 |
| Octopus-v2-Q5_K.gguf | Q5_K | 5 | 1.84 GB | 61.28 | big, recommended |
| Octopus-v2-Q5_K_S.gguf | Q5_K_S | 5 | 1.80 GB | 62.16 | big, recommended |
| Octopus-v2-Q5_K_M.gguf | Q5_K_M | 5 | 1.71 GB | 61.54 | big, recommended |
| Octopus-v2-Q6_K.gguf | Q6_K | 6 | 2.06 GB | 55.94 | very big, not very recommended |
| Octopus-v2-Q8_0.gguf | Q8_0 | 8 | 2.67 GB | 56.35 | very big, not very recommended |
| Octopus-v2-f16.gguf | f16 | 16 | 5.02 GB | 36.27 | extremely big |
| Octopus-v2.gguf | | | 10.00 GB | | |
_Quantized with llama.cpp_
**Acknowledgement**:
We sincerely thank our community members, [Mingyuan](https://huggingface.co/ThunderBeee), [Zoey](https://huggingface.co/ZY6), [Brian](https://huggingface.co/JoyboyBrian), [Perry](https://huggingface.co/PerryCheng614), [Qi](https://huggingface.co/qiqiWav), [David](https://huggingface.co/Davidqian123) for their extraordinary contributions to this quantization effort.
|