--- library_name: peft license: other base_model: deepseek-ai/deepseek-coder-6.7b-instruct tags: - axolotl - generated_from_trainer model-index: - name: 0798b233-1c06-4ca1-b9c8-5c844686d6df results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: deepseek-ai/deepseek-coder-6.7b-instruct bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - c70daf261b4a8f0c_train_data.json ds_type: json format: custom path: /workspace/input_data/c70daf261b4a8f0c_train_data.json type: field_input: '' field_instruction: question field_output: context format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: Nexspear/0798b233-1c06-4ca1-b9c8-5c844686d6df hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/c70daf261b4a8f0c_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 83987365-e4de-4d5e-86a2-818a5944f0b4 wandb_project: Gradients-On-Four wandb_run: your_name wandb_runid: 83987365-e4de-4d5e-86a2-818a5944f0b4 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# 0798b233-1c06-4ca1-b9c8-5c844686d6df This model is a fine-tuned version of [deepseek-ai/deepseek-coder-6.7b-instruct](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0378 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0004 | 1 | 2.4607 | | 2.4399 | 0.0035 | 9 | 2.4403 | | 2.3826 | 0.0070 | 18 | 2.3071 | | 2.2498 | 0.0105 | 27 | 2.2249 | | 2.1752 | 0.0140 | 36 | 2.1642 | | 2.1862 | 0.0175 | 45 | 2.1195 | | 2.0415 | 0.0210 | 54 | 2.0872 | | 2.0806 | 0.0245 | 63 | 2.0645 | | 2.0701 | 0.0280 | 72 | 2.0500 | | 1.9885 | 0.0315 | 81 | 2.0419 | | 2.0554 | 0.0350 | 90 | 2.0385 | | 2.0638 | 0.0384 | 99 | 2.0378 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1