--- library_name: peft license: bigscience-bloom-rail-1.0 base_model: bigscience/bloomz-560m tags: - axolotl - generated_from_trainer model-index: - name: 29eb08d5-0ff6-4863-ae3d-293ec46ae81a results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: bigscience/bloomz-560m bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - f1bc7e9faf5b03b2_train_data.json ds_type: json format: custom path: /workspace/input_data/f1bc7e9faf5b03b2_train_data.json type: field_input: real_abstract field_instruction: title field_output: generated_abstract format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: Nexspear/29eb08d5-0ff6-4863-ae3d-293ec46ae81a hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/f1bc7e9faf5b03b2_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: 4267907d-a9d0-4f7a-ad94-b6ffd47bc6ff wandb_project: Gradients-On-Four wandb_run: your_name wandb_runid: 4267907d-a9d0-4f7a-ad94-b6ffd47bc6ff warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# 29eb08d5-0ff6-4863-ae3d-293ec46ae81a This model is a fine-tuned version of [bigscience/bloomz-560m](https://huggingface.co/bigscience/bloomz-560m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.9455 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0034 | 1 | 2.3144 | | 8.9964 | 0.0309 | 9 | 2.2398 | | 8.3309 | 0.0619 | 18 | 2.1041 | | 8.0886 | 0.0928 | 27 | 2.0422 | | 7.8037 | 0.1237 | 36 | 2.0057 | | 7.8449 | 0.1546 | 45 | 1.9821 | | 7.9978 | 0.1856 | 54 | 1.9646 | | 7.5581 | 0.2165 | 63 | 1.9571 | | 7.7959 | 0.2474 | 72 | 1.9517 | | 7.4536 | 0.2784 | 81 | 1.9476 | | 7.7221 | 0.3093 | 90 | 1.9463 | | 7.6559 | 0.3402 | 99 | 1.9455 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1