venkat-srinivasan-nexusflow
commited on
Commit
·
7d6e8c5
1
Parent(s):
c88dbd1
Upload langdemo.py
Browse filesMigrate the previous V1 langchain demo to V2.
- langdemo.py +147 -0
langdemo.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Literal, Union
|
2 |
+
|
3 |
+
import math
|
4 |
+
|
5 |
+
from langchain.tools.base import StructuredTool
|
6 |
+
from langchain.agents import (
|
7 |
+
Tool,
|
8 |
+
AgentExecutor,
|
9 |
+
LLMSingleActionAgent,
|
10 |
+
AgentOutputParser,
|
11 |
+
)
|
12 |
+
from langchain.schema import AgentAction, AgentFinish, OutputParserException
|
13 |
+
from langchain.prompts import StringPromptTemplate
|
14 |
+
from langchain.llms import HuggingFaceTextGenInference
|
15 |
+
from langchain.chains import LLMChain
|
16 |
+
|
17 |
+
|
18 |
+
##########################################################
|
19 |
+
# Step 1: Define the functions you want to articulate. ###
|
20 |
+
##########################################################
|
21 |
+
|
22 |
+
|
23 |
+
def calculator(
|
24 |
+
input_a: float,
|
25 |
+
input_b: float,
|
26 |
+
operation: Literal["add", "subtract", "multiply", "divide"],
|
27 |
+
):
|
28 |
+
"""
|
29 |
+
Computes a calculation.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
input_a (float) : Required. The first input.
|
33 |
+
input_b (float) : Required. The second input.
|
34 |
+
operation (string): The operation. Choices include: add to add two numbers, subtract to subtract two numbers, multiply to multiply two numbers, and divide to divide them.
|
35 |
+
"""
|
36 |
+
match operation:
|
37 |
+
case "add":
|
38 |
+
return input_a + input_b
|
39 |
+
case "subtract":
|
40 |
+
return input_a - input_b
|
41 |
+
case "multiply":
|
42 |
+
return input_a * input_b
|
43 |
+
case "divide":
|
44 |
+
return input_a / input_b
|
45 |
+
|
46 |
+
|
47 |
+
def cylinder_volume(radius, height):
|
48 |
+
"""
|
49 |
+
Calculate the volume of a cylinder.
|
50 |
+
|
51 |
+
Parameters:
|
52 |
+
- radius (float): The radius of the base of the cylinder.
|
53 |
+
- height (float): The height of the cylinder.
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
- float: The volume of the cylinder.
|
57 |
+
"""
|
58 |
+
if radius < 0 or height < 0:
|
59 |
+
raise ValueError("Radius and height must be non-negative.")
|
60 |
+
|
61 |
+
volume = math.pi * (radius**2) * height
|
62 |
+
return volume
|
63 |
+
|
64 |
+
|
65 |
+
#############################################################
|
66 |
+
# Step 2: Let's define some utils for building the prompt ###
|
67 |
+
#############################################################
|
68 |
+
|
69 |
+
|
70 |
+
RAVEN_PROMPT = """
|
71 |
+
{raven_tools}
|
72 |
+
User Query: Question: {input}
|
73 |
+
|
74 |
+
Please pick a function from the above options that best answers the user query and fill in the appropriate arguments.<human_end>"""
|
75 |
+
|
76 |
+
|
77 |
+
# Set up a prompt template
|
78 |
+
class RavenPromptTemplate(StringPromptTemplate):
|
79 |
+
# The template to use
|
80 |
+
template: str
|
81 |
+
# The list of tools available
|
82 |
+
tools: List[Tool]
|
83 |
+
|
84 |
+
def format(self, **kwargs) -> str:
|
85 |
+
prompt = "<human>:\n"
|
86 |
+
for tool in self.tools:
|
87 |
+
func_signature, func_docstring = tool.description.split(" - ", 1)
|
88 |
+
prompt += f'\nOPTION:\n<func_start>def {func_signature}<func_end>\n<docstring_start>\n"""\n{func_docstring}\n"""\n<docstring_end>\n'
|
89 |
+
kwargs["raven_tools"] = prompt
|
90 |
+
return self.template.format(**kwargs).replace("{{", "{").replace("}}", "}")
|
91 |
+
|
92 |
+
|
93 |
+
class RavenOutputParser(AgentOutputParser):
|
94 |
+
def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
|
95 |
+
# Check if agent should finish
|
96 |
+
if "Call:" in llm_output:
|
97 |
+
return AgentFinish(
|
98 |
+
return_values={
|
99 |
+
"output": llm_output.strip()
|
100 |
+
.replace("Call:", "")
|
101 |
+
.strip()
|
102 |
+
},
|
103 |
+
log=llm_output,
|
104 |
+
)
|
105 |
+
else:
|
106 |
+
raise OutputParserException(f"Could not parse LLM output: `{llm_output}`")
|
107 |
+
|
108 |
+
|
109 |
+
##################################################
|
110 |
+
# Step 3: Build the agent with these utilities ###
|
111 |
+
##################################################
|
112 |
+
|
113 |
+
|
114 |
+
inference_server_url = "https://rjmy54al17scvxjr.us-east-1.aws.endpoints.huggingface.cloud"
|
115 |
+
assert (
|
116 |
+
inference_server_url is not "<YOUR ENDPOINT URL>"
|
117 |
+
), "Please provide your own HF inference endpoint URL!"
|
118 |
+
|
119 |
+
llm = HuggingFaceTextGenInference(
|
120 |
+
inference_server_url=inference_server_url,
|
121 |
+
temperature=0.001,
|
122 |
+
max_new_tokens=400,
|
123 |
+
do_sample=False,
|
124 |
+
)
|
125 |
+
tools = [
|
126 |
+
StructuredTool.from_function(calculator),
|
127 |
+
StructuredTool.from_function(cylinder_volume),
|
128 |
+
]
|
129 |
+
raven_prompt = RavenPromptTemplate(
|
130 |
+
template=RAVEN_PROMPT, tools=tools, input_variables=["input"]
|
131 |
+
)
|
132 |
+
llm_chain = LLMChain(llm=llm, prompt=raven_prompt)
|
133 |
+
output_parser = RavenOutputParser()
|
134 |
+
agent = LLMSingleActionAgent(
|
135 |
+
llm_chain=llm_chain,
|
136 |
+
output_parser=output_parser,
|
137 |
+
stop=["<bot_end>"],
|
138 |
+
allowed_tools=tools,
|
139 |
+
)
|
140 |
+
agent_chain = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
|
141 |
+
|
142 |
+
call = agent_chain.run(
|
143 |
+
"I have a cake that is about 3 centimenters high and 200 centimeters in radius. How much cake do I have?"
|
144 |
+
)
|
145 |
+
print(eval(call))
|
146 |
+
call = agent_chain.run("What is 1+10?")
|
147 |
+
print(eval(call))
|